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Purpose: Bayesian multilevel models are increasingly
used to overcome the limitations of frequentist approaches
in the analysis of complex structured data. This tutorial
introduces Bayesian multilevel modeling for the specific
analysis of speech data, using the brms package developed
in R.
Method: In this tutorial, we provide a practical introduction
to Bayesian multilevel modeling by reanalyzing a phonetic
data set containing formant (F1 and F2) values for 5 vowels
of standard Indonesian (ISO 639-3:ind), as spoken by
8 speakers (4 females and 4 males), with several repetitions
of each vowel.
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Results: We first give an introductory overview of the
Bayesian framework and multilevel modeling. We then
show how Bayesian multilevel models can be fitted using
the probabilistic programming language Stan and the R
package brms, which provides an intuitive formula syntax.
Conclusions: Through this tutorial, we demonstrate some
of the advantages of the Bayesian framework for statistical
modeling and provide a detailed case study, with complete
source code for full reproducibility of the analyses (https://
osf.io/dpzcb/).
Supplemental Material: https://doi.org/10.23641/asha.
7973822
The last decade has witnessed noticeable changes in
the way experimental data are analyzed in phonetics,
psycholinguistics, and speech sciences in general.

In particular, there has been a shift from analysis of variance
(ANOVA) to linear mixed models, also known as hierarchical
models or multilevel models (MLMs), spurred by the spread-
ing use of data-oriented programming languages such as
R (R Core Team, 2018) and by the enthusiasm of its ac-
tive and ever-growing community. This shift has been fur-
ther sustained by the current transition in data analysis in
social sciences, with researchers evolving from a widely
criticized point-hypothesis mechanical testing (e.g., Bakan,
1966; Gigerenzer, Krauss, & Vitouch, 2004; Kline, 2004;
Lambdin, 2012; Trafimow et al., 2018) to an approach
that emphasizes parameter estimation, model comparison,
and continuous model expansion (e.g., Cumming, 2012, 2014;
Gelman et al., 2013; Gelman & Hill, 2007; Kruschke, 2015;
Kruschke & Liddell, 2018a, 2018b; McElreath, 2016).

MLMs offer great flexibility in the sense that they
can model statistical phenomena that occur on different
levels. This is done by fitting models that include both con-
stant and varying effects (sometimes referred to as fixed
and random effects, but see Box 1). Among other advan-
tages, this makes it possible to generalize the results to
unobserved levels of the groups existing in the data (e.g.,
stimulus or participant; Janssen, 2012). The multilevel
strategy can be especially useful when dealing with re-
peated measurements (e.g., when measurements are nested
into participants) or with unequal sample sizes and, more
Disclosure: The authors have declared that no competing interests existed at the time
of publication.
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Dow
generally, when handling complex dependency structures
in the data. Such complexities are frequently found in the
kind of experimental designs used in speech science studies,
for which MLMs are therefore particularly well suited.

The standard MLM is usually fitted in a frequen-
tist framework, with the lme4 package (Bates, Mächler,
Bolker, & Walker, 2015) in R (R Core Team, 2018). How-
ever, when one tries to include the maximal varying effect
structure, this kind of model tends either not to con-
verge or to give aberrant estimations of the correlation
between varying effects (e.g., Bates, Kliegl, Vasishth, &
Baayen, 2015).1 Yet, fitting the maximal varying effect
structure has been explicitly recommended (e.g., Barr, Levy,
Scheepers, & Tily, 2013). In contrast, the maximal vary-
ing effect structure can generally be fitted in a Bayesian
framework (Bates, Kliegl, et al., 2015; Eager & Roy, 2017;
Nicenboim & Vasishth, 2016; Sorensen, Hohenstein, &
Vasishth, 2016).

Another advantage of Bayesian statistical modeling
is that it fits the way researchers intuitively understand
statistical results. Widespread misinterpretations of frequen-
tist statistics (such as p values and confidence intervals) are
often attributable to the wrong interpretation of these sta-
tistics as resulting from a Bayesian analysis (e.g., Dienes,
2011; Gigerenzer et al., 2004; Hoekstra, Morey, Rouder, &
Wagenmakers, 2014; Kruschke & Liddell, 2018a; Morey,
Hoekstra, Rouder, Lee, & Wagenmakers, 2015). However,
the intuitive nature of the Bayesian approach might argu-
ably be hidden by the predominance of frequentist teaching
in undergraduate statistical courses.

Moreover, the Bayesian approach offers a natural
solution to the problem of multiple comparisons when
the situation is adequately modeled in a multilevel frame-
work (Gelman, Hill, & Yajima, 2012; Scott & Berger,
2010) and allows a priori knowledge to be incorporated
in data analysis via the prior distribution. The latter fea-
ture is particularily relevant when dealing with contraint
parameters or for the purpose of incorporating expert
knowledge.

The aim of the current tutorial is to introduce Bayesian
MLMs (BMLMs) and to provide an accessible and illus-
trated hands-on tutorial for analyzing typical phonetic data.
This tutorial will be structured in two main parts. First, we
will briefly introduce the Bayesian approach to data analysis
and the multilevel modeling strategy. Second, we will illus-
trate how BMLMs can be implemented in R by using the
brms package (Bürkner, 2017b) to reanalyze a data set from
McCloy (2014) available in the phonR package (McCloy,
2016). We will fit BMLMs of increasing complexity, going
step by step, providing explanatory figures, and making use
of the tools available in the brms package for model check-
ing and model comparison. We will then compare the results
obtained in a Bayesian framework using brms with the re-
sults obtained using frequentist MLMs fitted with lme4.
1In this context, the maximal varying effect structure means that any
potential source of systematic influence should be explicitly modeled
by adding appropriate varying effects.
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Throughout the tutorial, we will also provide comments and
recommendations about the feasability and the relevance
of such analysis for the researcher in speech sciences.

Bayesian Data Analysis
The Bayesian approach to data analysis differs from

the frequentist one in that each parameter of the model is
considered as a random variable (contrary to the frequentist
approach, which considers parameter values as unknown
and fixed quantities) and by the explicit use of probability
to model the uncertainty (Gelman et al., 2013). The two
approaches also differ in their conception of what probabil-
ity is. In the Bayesian framework, probability refers to
the experience of uncertainty, whereas in the frequentist
framework, it refers to the limit of a relative frequency
(i.e., the relative frequency of an event when the number
of trials approaches infinity). A direct consequence of these
two differences is that Bayesian data analysis allows re-
searchers to discuss the probability of a parameter (or a
vector of parameters) θ, given a set of data y:

p θjyð Þ ¼ p yjθð Þp θð Þ
p yð Þ (1)

Using this equation (known as Bayes’ theorem), a
probability distribution p(θ|y) can be derived (called the
posterior distribution) that reflects knowledge about the
parameter, given the data and the prior information. This
distribution is the goal of any Bayesian analysis and con-
tains all the information needed for inference.

The term p(θ) corresponds to the prior distribution,
which specifies the prior information about the parameters
(i.e., what is known about θ before observing the data) as
a probability distribution. The left hand of the numerator
p(y|θ) represents the likelihood, also called the sampling
distribution or generative model, and is the function through
which the data affect the posterior distribution. The likeli-
hood function indicates how likely the data are to appear,
for each possible value of θ.

Finally, p(y) is called the marginal likelihood. It is
meant to normalize the posterior distribution, that is, to
scale it in the “probability world.” It gives the “probabil-
ity of the data,” summing over all values of θ and is de-
scribed by p(y) = Σθ p (θ)p (y|θ) for discrete parameters
and by p(y) = ∫p (θ)p (y|θ)dθ in the case of continuous
parameters.

All these pieced together show that the result of a
Bayesian analysis, namely, the posterior distribution p(θ|y),
is given by the product of the information contained in
the data (i.e., the likelihood) and the information available
before observing the data (i.e., the prior). This constitutes
the crucial principle of Bayesian inference, which can be
seen as an updating mechanism (as detailed for instance
in Kruschke & Liddell, 2018a). To sum up, Bayes’ theo-
rem allows a prior state of knowledge to be updated
to a posterior state of knowledge, which represents a
1225–1242 • May 2019
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2Note that MLMs are sometimes called mixed models, as models that
comprise both fixed and random effects.

Dow
compromise between the prior knowledge and the empiri-
cal evidence.

The process of Bayesian analysis usually involves
three steps that begin with setting up a probability model
for all the entities at hand, then computing the posterior
distribution, and finally evaluating the fit and the relevance
of the model (Gelman et al., 2013). In the context of linear
regression, for instance, the first step would require to spec-
ify a likelihood function for the data and a prior distribution
for each parameter of interest (e.g., the intercept or the
slope). We will go through these three steps in more details
in the application section, but we will first give a brief over-
view of the multilevel modeling strategy.

Multilevel Modeling
MLMs can be considered as multilevel for at least

two reasons. First, an MLM can generally be conceived as
a regression model in which the parameters are themselves
modeled as outcomes of another regression model. The pa-
rameters of this second-level regression are known as hyper-
parameters and are also estimated from the data (Gelman
& Hill, 2007). Second, the multilevel structure can arise from
the data itself, for instance, when one tries to model the
second language speech intelligibility of a child, who is con-
sidered within a particular class, itself considered within a
particular school. In such cases, the hierarchical structure
of the data itself calls for hierarchical modeling. In both
conceptions, the number of levels that can be handled by
MLMs is virtually unlimited (McElreath, 2016). When we
use the term multilevel in the following, we will refer to the
structure of the model, rather than to the structure of the
data, as nonnested data can also be modeled in a multilevel
framework.

As briefly mentioned earlier, MLMs offer several ad-
vantages compared to single-level regression models, as they
can handle the dependency between units of analysis from
the same group (e.g., several observations from the same par-
ticipant). In other words, they can account for the fact that,
for instance, several observations are not independent, as
they relate to the same participant. This is achieved by parti-
tioning the total variance into variation due to the groups
(Level 2) and to the individual (Level 1). As a result, such
models provide an estimation of the variance component for
the second level (i.e., the variability of the participant-specific
estimates) or higher levels, which can inform us about the
generalizability of the findings (Janssen, 2012; McElreath,
2016).

Multilevel modeling allows both fixed and random
effects to be incorporated. However, as pointed out by
Gelman (2005), we can find at least five different (and some-
times contradictory) ways of defining the meaning of the
terms fixed and random effects. Moreover, Gelman and Hill
(2007) remarked that what is usually called a fixed effect
can generally be conceived as a random effect with a null
variance. In order to use a consistent vocabulary, we fol-
low the recommendations of Gelman and Hill (2007) and
avoid these terms. We instead use the more explicit terms
nloaded from: https://pubs.asha.org SUNY at Buffalo - Health Science Library on
constant and varying to designate effects that are constant
or that vary by groups.2

A question one is frequently faced with in multilevel
modeling is to know which parameters should be consid-
ered as varying and which parameters should be considered
as constant. A practical answer is provided by McElreath
(2016), who states that “any batch of parameters with
exchangeable index values can be and probably should be
pooled”. For instance, if we are interested in the categori-
zation of native versus nonnative phonemes and if for
each phoneme in each category there are multiple audio
stimuli (e.g., multiple repetitions of the same phoneme)
and if we do not have any reason to think that, for each
phoneme, audio stimuli may differ in intelligibility in
any systematic way, then repetitions of the same phoneme
should be pooled together. The essential feature of this
strategy is that exchangeability of the lower units (i.e., the
multiple repetitions of the same phoneme) is achieved by
conditioning on indicator variables (i.e., the phonemes)
that represent groupings in the population (Gelman et al.,
2013).

To sum up, MLMs are useful as soon as there are
predictors at different levels of variation (Gelman et al.,
2013). One important aspect is that this varying coeffi-
cients approach allows each subgroup to have a different
mean outcome level while still estimating the global mean
outcome level. In an MLM, these two estimations inform
each other in a way that leads to the phenomenon of
shrinkage, which will be discussed in more detail below
(see Varying Intercept Model section).

As an illustration, we will build an MLM starting
from the ordinary linear regression model and trying to
predict an outcome yi (e.g., second language speech intel-
ligibility) by a linear combination of an intercept α and a
slope β that quantifies the influence of a predictor xi (e.g.,
the number of lessons received in this second language):

yi ∼ Normal μi;σeð Þ
μi ¼ αþ βxi

(2)

This notation is strictly equivalent to the (maybe more
usual) following notation:

yi ¼ αþ βxi þ ϵi
ϵi ∼ Normal 0;σeð Þ (3)

We prefer to use the first notation as it generalizes
better to more complex models, as we will see later. In
Bayesian terms, these two lines describe the likelihood of
the model, which is the assumption made about the gen-
erative process from which the data are issued. We make
the assumption that the outcomes yi are normally distributed
around a mean μi with some error σe. This is equivalent
Nalborczyk et al.: Introducing brms 1227
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Box 1. Where are my random effects?

In the Bayesian framework, every unknown quantity is considered as a random variable that we can describe using probability
distributions. As a consequence, there is no such thing as a “fixed effect” or a “random effects distribution” in a Bayesian
framework. However, these semantic quarrels disappear when we write down the model.
Suppose we have a dependent continuous variable y and a dichotomic categorical predictor x (assumed to be contrast-coded).
Let yij denote the score of the i th participant in the j th condition. We can write a “mixed effects” model (as containing
both fixed and random effects) as follows:

yij ¼ α þ αi þ βxj þ eij; eij ∼ Normalð0; σ 2
e Þ; αi∼ Normalð0; σ 2

a Þ ð1Þ
where the terms α and β represent the “fixed effects” and denote the overall mean response and the condition difference
in response, respectively. In addition, eij are random errors assumed to be normally distributed with unknown variance
σe
2 , and αi’s are individual specific random effects normally distributed in the population with unknown variance σa

2.
We can rewrite this model to make apparent that the so-called “random effects distribution” can actually be considered
a prior distribution (from a Bayesian standpoint), since by definition, distributions on unknown quantities are considered
as priors:

yij ∼ Normalð�ij; σ
2
e Þ

μij ¼ αi þ βxj ð2Þ
αi ∼ Normalðα; σ 2

α Þ
where the parameters of this prior are learned from the data. As we have seen, the same mathematical entity can be
conceived either as a “random effects distribution” or as a prior distribution, depending on the framework.

Box 1. Where are my random effects?

Dow
to saying that the errors are normally distributed around
0, as illustrated by the above equivalence. Then, we can
extend this model to the following MLM, adding a vary-
ing intercept:

yi ∼ Normal μi;σeð Þ
μi ¼ αj i½ � þ βxi
αj ∼ Normal α;σαð Þ

(4)

where we use the notation αj[i] to indicate that each group j
(e.g., class) is given a unique intercept, issued from a
Gaussian distribution centered on α, the grand intercept,3

meaning that there might be different mean scores for each
class. From this notation, we can see that, in addition to
the residual standard deviation σe, we are now estimating
one more variance component σα, which is the standard
deviation of the distribution of varying intercepts. We can
interpret the variation of the parameter α between groups j
by considering the intraclass correlation (ICC) σ2

α= σ2
α þ σ2

e

� �
,

which goes to 0, if the grouping conveys no information,
and to 1, if all observations in a group are identical (Gelman
& Hill, 2007, p. 258).

The third line is called a prior distribution in the
Bayesian framework. This prior distribution describes the
population of intercepts, thus modeling the dependency
between these parameters.

Following the same strategy, we can add a varying
slope, allowed to vary according to the group j:
3Acknowledging that these individual intercepts can also be seen as
adjustments to the grand intercept α, which are specific to group j.

1228 Journal of Speech, Language, and Hearing Research • Vol. 62 •
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yi ∼ Normal μi;σeð Þ
μi ¼ αj i½ � þ βj i½ �xi
αj ∼ Normal α;σαð Þ
βj ∼ Normal β;σβ

� � (5)

Indicating that the effect of the number of lessons
on second language speech intelligibility is allowed to dif-
fer from one class to another (i.e., the effect of the num-
ber of lessons might be more beneficial to some classes
than others). These varying slopes are assigned a prior
distribution centered on the grand slope β and with stan-
dard deviation σβ.

In this introductory section, we have presented the
foundations of Bayesian analysis and multilevel model-
ing. Bayes’ theorem allows prior knowledge about pa-
rameters to be updated according to the information
conveyed by the data, whereas MLMs allow complex
dependency structures to be modeled. We now move
to a detailed case study in order to illustrate these
concepts.

Software Programs
Sorensen et al. (2016) provided a detailed and acces-

sible introduction to BMLMs applied to linguistics using
the probabilistic language Stan (Stan Development
Team, 2016). However, discovering BMLMs and the
Stan language all at once might seem a little overwhelming,
as Stan can be difficult to learn for users that are not experi-
enced with programming languages. As an alternative, we
introduce the brms package (Bürkner, 2017b) that imple-
ments BMLMs in R using Stan under the hood, with an
lme4-like syntax. Hence, the syntax required by brms will
1225–1242 • May 2019
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not surprise the researcher familiar with lme4 as models
of the following form:

yi ∼ Normal μi;σeð Þ
μi ¼ αþ αsubject i½ � þ βxi

(6)

are specified in brms (as in lme4) with y ~ 1 + x +
(1|subject). In addition to linear regression models,
brms allows generalized linear and nonlinear MLMs to
be fitted and comes with a great variety of distribution
and link functions. For instance, brms allows fitting robust
linear regression models or modeling dichotomous and cate-
gorical outcomes using logistic and ordinal regression models.
The flexibility of brms also allows for distributional models
(i.e., models that include simultaneous predictions of all
response parameters), Gaussian processes, or nonlinear
models to be fitted, among others. More information about
the diversity of models that can be fitted with brms and
their implementation is provided in Bürkner (2017a, 2017b).

Application Example
To illustrate the use of BMLMs, we reanalyzed a data

set from McCloy (2014), available in the phonR package
(McCloy, 2016). This data set contains formant (F1 and F2)
Figure 1. Euclidean distances between each observation and the centers
by gender (top row: female, bottom row: male) and by vowel (in column),
represent the individual data collapsed for all individuals (male and fema
represents a unique center of gravity for each vowel for all participants, w
vowel and each participant.

nloaded from: https://pubs.asha.org SUNY at Buffalo - Health Science Library on
frequencies (in Hz) for five vowels of standard Indonesian
(ISO 639-3:ind), as spoken by eight speakers (four females,
four males), with approximately 45 repetitions of each vowel.
The research question we investigated here is the effect of
gender on vowel production variability.
Data Preprocessing
Our research question was about the different amounts

of variability in the respective vowel productions of male
and female speakers due to cognitive or social differences. To
answer this question, we first needed to get rid of the dif-
ferences in vowel production that are due to physiological
differences between males and females (e.g., shorter vocal
tract length for females). More generally, we needed to
eliminate the interindividual differences due to physiological
characteristics in our groups of participants. For that pur-
pose, we first applied the Watt and Fabricius formant
normalization technique (Watt & Fabricius, 2002). The
principle of this method is to calculate for each speaker
a “center of gravity” S in the F1/F2 plane from the for-
mant frequencies of point vowels [i, a, u] and to express
the formant frequencies of each observation as ratios of
the value of S for that formant.
of gravity corresponding to each vowel across all participants,
in the normalized F1–F2 plane. The gray background plots
le) and all vowels. Note that, for the sake of clarity, this figure
hereas in the analysis, one center of gravity was used for each

Nalborczyk et al.: Introducing brms 1229
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Table 1. Ten randomly picked rows from the data.

Subject Gender Vowel F1 (Hz) F2 (Hz) F1norm F2norm Distance Repetition

M02 M /e/ 534 1,724 1.143 1.113 0.118 7
F09 F /i/ 468 2,401 0.943 1.447 0.223 16
F04 F /a/ 885 1,413 1.636 0.804 0.223 12
M01 M /a/ 671 1,262 1.615 0.823 0.176 25
F04 F /a/ 700 1,951 1.294 1.109 0.237 36
F04 F /e/ 614 2,100 1.135 1.194 0.070 42
M04 M /i/ 338 2,163 0.803 1.432 0.040 16
F04 F /o/ 649 1,357 1.200 0.772 0.154 12
M04 M /a/ 524 1,573 1.245 1.041 0.146 20
M02 M /u/ 411 762 0.879 0.492 0.134 25

Note. F1norm and F2norm represent the F1 and F2 normalized formant values.

Dow
Then, for each vowel and participant, we computed
the Euclidean distance between each observation and
the center of gravity of the whole set of observations in
the F1–F2 plane for that participant and that vowel. The
data obtained by this process are illustrated in Figure 1,
and a sample of the final data set can be found in Table 1.

Constant Effect of Gender on Vowel
Production Variability

We then built a first model with constant effects only and
vague priors on α and β, the intercept and the slope, respec-
tively. We contrast-coded gender (f = −0.5, m = 0.5). Our
dependent variable was therefore the distance from each indi-
vidual vowel center of gravity, which we will refer to as formant
distance in the following. The formal model can be expressed as:

distancei ∼ Normal μi;σeð Þ
μi ¼ αþ β � genderi
α ∼ Normal 0; 10ð Þ
β ∼ Normal 0; 10ð Þ
σe ∼ HalfCauchy 10ð Þ

(7)

where the first two lines of the model describe the likelihood
and the linear model.4 The next three lines define the prior distri-
bution for each parameter of the model, where α and β are
given a vague (weakly informative) Gaussian prior centered
on 0, and the residual variation is given a Half-Cauchy prior
(Gelman, 2006; Polson & Scott, 2012), thus restricting the
range of possible values to positive ones. As depicted in Fig-
ure 2, the Normal(0, 10) prior is weakly informative in
the sense that it grants a relative high weight to α and β
values, between −25 and 25. This corresponds to very
large (given the scale of our data) values for respectively
the mean distance value α and the mean difference be-
tween males and females β. The HalfCauchy(10) prior placed
on σe also allows very large values of σe, as represented in the
right panel of Figure 2.
4Note that—for the sake of simplicity—throughout this tutorial, we
use a normal likelihood, but other (better) alternatives would include
using skew-normal or log-normal models, which are implemented in
brms with the skew_normal and lognormal families. We provide
examples in Supplemental Material S1.

1230 Journal of Speech, Language, and Hearing Research • Vol. 62 •

nloaded from: https://pubs.asha.org SUNY at Buffalo - Health Science Library on
These priors can be specified in numerous ways (see
?set_prior for more details), among which the following:
1225–1

 04/01/
prior1 <- c(
prior(normal(0, 10),
class = Intercept),
prior(normal(0, 10),
class = b, coef = gender),
prior(cauchy(0, 10),
class = sigma)
)

where a prior can be defined over a class of parame-
ters (e.g., for all variance components, using the sd class)
or for a specific one, for instance, as above by specifying
the coefficient (coef) to which the prior corresponds (here
the slope of the constant effect of gender).

The model can be fitted with brms with the follow-
ing command:
library(brms)

bmod1 <- brm(
distance ~ gender,
data = indo, family = gaussian(),
prior = prior1,
warmup = 2000, iter = 5000
)

where distance is the distance from the center of
gravity. The iter argument serves to specify the total
number of iterations of the Markov chain Monte Carlo
(MCMC) algorithm, and the warmup argument specifies
the number of iterations that are run at the beginning
of the process to “calibrate” the MCMC, so that only
iter - warmup iterations are retained in the end to ap-
proximate the shape of the posterior distribution (for
more details, see McElreath, 2016).

Figure 3 depicts the estimations of this first model
for the intercept α, the slope β, and the residual standard
deviation σe. The left part of the plot shows histograms
of draws taken from the posterior distribution and from
which several summaries can be computed (e.g., mean,
mode, quantiles). The right part of Figure 3 shows the be-
havior of the two simulations (i.e., the two chains) used to
approximate the posterior distribution, where the x-axis
242 • May 2019
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Figure 2. Prior distributions used in the first model, for α and β (left panel) and for the residual variation σe (right panel).

Figure 3. Histograms of posterior samples and trace plots of the intercept, the slope for gender, and the standard deviation of the residuals
of the constant effects model.

Nalborczyk et al.: Introducing brms 1231
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Table 2. Posterior mean, standard error, 95% credible interval, and
̂R statistic for each parameter of the constant effect model bmod1.

Parameter M SE Lower bound Upper bound Rhat

α 0.163 0.002 0.159 0.168 1.000
β −0.042 0.005 −0.051 −0.033 1.000
σe 0.098 0.002 0.095 0.102 1.000

Dow
represents the number of iterations and the y-axis represents
the value of the parameter. This plot reveals one important
aspect of the simulations that should be checked, known as
mixing. A chain is considered well mixed if it explores many
different values for the target parameters and does not stay
in the same region of the parameter space. This feature
can be evaluated by checking that these plots, usually re-
ferred to as trace plots, show random scatter around a
mean value (they look like a “fat hairy caterpillar”).
5Wher
confide
based
.95 pro

1232

nloade
library(tidyverse)
bmod1 %>%

plot(
combo = c("hist", "trace"),
widths = c(1, 1.5),
theme = theme_bw(base_size = 10)
)

The estimations obtained for this first model are sum-
marized in Table 2, which includes the mean, the standard
error (SE), and the lower and upper bounds of the 95% cred-
ible interval (CrI)5 of the posterior distribution for each pa-
rameter. As gender was contrast-coded before the analysis
(f = −0.5, m = 0.5), the intercept α corresponds to the grand
mean of the formant distance over all participants and has
its mean around 0.16. The estimate of the slope (β = −0.04)
suggests that females are more variable than males in the
way they pronounce vowels, whereas the 95% CrI can be
interpreted in a way that there is a .95 probability that the
value of the intercept lies in the [−0.05, −0.03] interval.

The Rhat value corresponds to the potential scale re-
duction factor R̂ (Gelman & Rubin, 1992), which provides
information about the convergence of the algorithm. This
index can be conceived as equivalent to the F ratio in
ANOVA. It compares the between-chains variability (i.e.,
the extent to which different chains differ one from each
other) to the within-chain variability (i.e., how widely a chain
explores the parameter space) and, as such, gives an index
of the convergence of the chains. An overly large between-
chains variance (as compared to the within-chain variabil-
ity) would be a sign that chain-specific characteristics,
such as the starting value of the algorithm, have a strong
influence on the final result. Ideally, the value of Rhat
should be close to 1 and should not exceed 1.1. Otherwise,
one might consider running more iterations or defining
stronger priors (Bürkner, 2017b; Gelman et al., 2013).
Varying Intercept Model
The first model can be improved by taking into ac-

count the dependency between vowel formant measures for
each participant. This is handled in MLMs by specifying
unique intercepts αsubject[i] and by assigning them a com-
mon prior distribution. This strategy corresponds to the
e a credible interval is the Bayesian analogue of a classical
nce interval, except that probability statements can be made
on it (e.g., “given the data and our prior assumptions, there is a
bability that this interval encompasses the population value θ”).
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following by-subject varying intercept model, bmod2:

distancei ∼ Normal μi;σeð Þ
μi ¼ αþ αsubject i½ � þ β � genderi

αsubject ∼ Normal 0;σsubject
� �

α ∼ Normal 0; 10ð Þ
β ∼ Normal 0; 10ð Þ

σsubject ∼ HalfCauchy 10ð Þ
σe ∼ HalfCauchy 10ð Þ

(8)

This model can be fitted with brms with the follow-
ing command (where we specify the HalfCauchy prior on
σsubject by applying it on parameters of class sd):
1225–1

 04/01/
prior2 <- c(
prior(normal(0, 10), class =
Intercept),
prior(normal(0, 10), class = b,
coef = gender),
prior(cauchy(0, 10), class = sd),
prior(cauchy(0, 10), class = sigma)
)

bmod2 <- brm(
distance ~ gender + (1|subj),
data = indo, family = gaussian(),
prior = prior2,
warmup = 2000, iter = 10000
)

As described in the first part of this tutorial, we now
have two sources of variation in the model: the standard
deviation of the residuals σe and the standard deviation of
the by-subject varying intercepts σsubject. The latter repre-
sents the standard deviation of the population of varying
intercepts and is also learned from the data. It means that
the estimation of each unique intercept will inform the esti-
mation of the population of intercepts, which, in return,
will inform the estimation of the other intercepts. We call
this sharing of information between groups the partial
pooling strategy, in comparison with the no pooling strat-
egy, where each intercept is estimated independently, and
with the complete pooling strategy, in which all intercepts
are given the same value (Gelman et al., 2013; Gelman &
Hill, 2007; McElreath, 2016). This is one of the most es-
sential features of MLMs and what leads to better esti-
mations than single-level regression models for repeated
measurements or unbalanced sample sizes. This pooling of
information is made apparent through the phenomenon
of shrinkage, which is illustrated in Figure 4 and, later on,
in Figure 6.
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Figure 4. Posterior distributions by subject, as estimated by the bmod2 model. The vertical dashed lines represent the means of the formant
distances for the female and male groups. Crosses represent the mean of the raw data for each participant. Arrows represent the amount of
shrinkage, between the raw mean and the estimation of the model (the mean of the posterior distribution).

Table 3. Posterior mean, standard error, 95% credible interval, and
R̂ statistic for each parameter of model bmod2 with a varying
intercept by subject.

Parameter M SE Lower bound Upper bound Rhat

α 0.163 0.006 0.150 0.176 1.001
β −0.042 0.013 −0.068 −0.017 1.001
σsubject 0.016 0.008 0.006 0.035 1.000
σe 0.098 0.002 0.095 0.101 1.000

Dow
Figure 4 shows the posterior distribution as esti-
mated by this second model for each participant, in relation
to the raw mean of its category (i.e., females or males),
represented by the vertical dashed lines. We can see for
instance that participants M02 and F09 have smaller
average distance than the means of their groups, whereas
participants M03 and F08 have larger ones. The arrows
represent the amount of shrinkage, that is, the deviation
between the mean in the raw data (represented by a
cross underneath each density) and the estimated mean of
the posterior distribution (represented by the peak of the
arrow). As shown in Figure 4, this shrinkage is always
directed toward the mean of the considered group (i.e.,
females or males) and the amount of shrinkage is deter-
mined by the deviation of the individual mean from its
group mean. This mechanism acts like a safeguard against
overfitting, preventing the model from overly trusting each
individual datum.

The marginal posterior distribution of each parameter
obtained with bmod2 is summarized in Table 3, where
the Rhat values close to 1 suggest that the model has
converged. We see that the estimates of α and β are similar
to the estimates of the first model, except that the SE
is now slightly larger. This result might seem surprising
at first sight, as we expected to improve the first model
by adding a by-subject varying intercept. In fact, it re-
veals an underestimation of the SE when using the first
nloaded from: https://pubs.asha.org SUNY at Buffalo - Health Science Library on
model. Indeed, the first model assumes independence of
observations, which is violated in our case. This highlights
the general need for careful consideration of the model’s
assumptions when interpreting its estimations. The first
model seemingly gives highly certain estimates, but these
estimations are only valid in the “independence of observa-
tions” world (see also the distinction between the small
world and the large world in McElreath, 2016). Moreover,
estimating an intercept by subject (as in the second model)
increases the precision of estimation, but it also makes
the average estimation less certain, thus resulting in a
larger SE.

This model (bmod2), however, is still not adequate
to describe the data, as the dependency between rep-
etitions of each vowel is not taken into account. In
bmod3, we added a by-vowel varying intercept, thus
Nalborczyk et al.: Introducing brms 1233
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Table 4. Posterior mean, standard error, 95% credible interval, and
R̂ statistic for each parameter of model bmod3 with a varying intercept
by subject and by vowel.

Parameter M SE Lower bound Upper bound Rhat

α 0.164 0.040 0.086 0.244 1.000
β −0.042 0.013 −0.069 −0.014 1.000
σsubject 0.017 0.008 0.007 0.036 1.000
σvowel 0.075 0.048 0.031 0.196 1.000
σe 0.088 0.002 0.085 0.091 1.000

Dow
also allowing each vowel to have a different general
level of variability.

distancei ∼ Normal μi;σeð Þ
μi ¼ αþ αsubject i½ � þ αvowel i½ � þ β � genderi

αsubject ∼ Normal 0;σsubject
� �

αvowel ∼ Normal 0;σvowelð Þ
α ∼ Normal 0; 10ð Þ
β ∼ Normal 0; 10ð Þ
σe ∼ HalfCauchy 10ð Þ

σsubject ∼ HalfCauchy 10ð Þ
σvowel ∼ HalfCauchy 10ð Þ

(9)

This model can be fitted with brms with the follow-
ing command:
6But p
interce

1234

nloade
prior3 < - c(
prior(normal(0, 10),
class = Intercept),
prior(normal(0, 10),
class = b, coef = gender),
prior(cauchy(0, 10),
class = sd),
prior(cauchy(0, 10),
class = sigma)
)

bmod3 <- brm(
distance ~ gender + (1|subj) + (1|
vowel),
data = indo, family = gaussian(),
prior = prior3,
warmup = 2000, iter = 10000
)

where the same Half-Cauchy is specified for the two
varying intercepts by applying it directly to the sd class.

The marginal posterior distribution of each parame-
ter is summarized in Table 4. We can compute the ICC
(see Multilevel Modeling section) to estimate the relative
variability associated with each varying effect: ICCsubject is
equal to .03 and ICCvowel is equal to .42. The rather high
ICC for vowels suggests that observations are highly corre-
lated within each vowel, thus stressing the relevance of
allocating a unique intercept by vowel.6

Including a Correlation Between Varying Intercept
and Varying Slope

One can legitimately question the assumption that the
differences between male and female productions are identi-
cal for each vowel. To explore this issue, we thus added a
varying slope for the effect of gender, allowing it to vary by
vowel. Moreover, we can exploit the correlation between the
baseline level of variability by vowel and the amplitude of
the difference between males and females in pronouncing
lease note that we do not mean to suggest that the varying
pt for subjects should be removed because its ICC is low.
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them. For instance, we can observe that the pronunciation
of /a/ is more variable in general. We might want to know
whether females tend to pronounce vowels that are situated
at a specific location in the F1–F2 plane with less variability
than males. In other words, we might be interested in know-
ing whether the effect of gender is correlated with the base-
line level of variability. This is equivalent to investigating the
dependency or the correlation between the varying inter-
cepts and the varying slopes. We thus estimated this corre-
lation by modeling αvowel and βvowel as issued from the same
multivariate normal distribution (a multivariate normal
distribution is a generalization of the usual normal distri-
bution to more than one dimension), centered on 0 and
with some covariance matrix S, as specified on the third
line of the following model:

distancei ∼ Normal μi;σeð Þ
μi ¼ αþ αsubject i½ � þ αvowel i½ � þ β þ βvowel i½ �

� �
� genderi

αvowel
βvowel

� �
∼ MVNormal

0
0

� �
; S

� 	

S ¼ σ2
αvowel

σαvowelσβvowelρ
σαvowelσβvowelρ σ2

βvowel

 !

αsubject ∼ Normal 0;σsubject
� �

α ∼ Normal 0; 10ð Þ
β ∼ Normal 0; 10ð Þ
σe ∼ HalfCauchy 10ð Þ

σαvowel ∼ HalfCauchy 10ð Þ
σβvowel ∼ HalfCauchy 10ð Þ
σsubject ∼ HalfCauchy 10ð Þ

R ∼ LKJcorr 2ð Þ

ð10Þ

where R is the correlation matrix R ¼ 1 ρ
ρ 1

� 	
and ρ is

the correlation between intercepts and slopes used in the
computation of S. This matrix is given the LKJ-correlation
prior (Lewandowski, Kurowicka, & Joe, 2009) with a
parameter ζ (zeta) that controls the strength of the correla-
tion.7 When ζ = 1, the prior distribution on the correlation
is uniform between −1 and 1. When ζ > 1, the prior dis-
tribution is peaked around a zero correlation, whereas
lower values of ζ (0 < ζ < 1) allocate more weight to ex-
treme values (i.e., close to −1 and 1) of ρ (see Figure 5).
7The LKJ prior is the default prior for correlation matrices in brms.
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Figure 5. Visualization of the LKJ prior for different values of the
shape parameter ζ.

Table 5. Posterior mean, standard error, 95% credible interval, and
R̂ statistic for each parameter of model bmod4 with a varying
intercept and varying slope by vowel.

Parameter M SE Lower bound Upper bound Rhat

α 0.164 0.036 0.096 0.237 1.001
β −0.042 0.030 −0.099 0.016 1.000
σsubject 0.016 0.008 0.007 0.036 1.000
σαvowel 0.067 0.043 0.029 0.171 1.000
σβvowel

0.052 0.031 0.022 0.132 1.000
ρ −0.497 0.356 −0.951 0.371 1.001
σe 0.086 0.001 0.084 0.089 1.000

Downloade
prior4 <- c(
prior(normal(0, 10),
class = Intercept),
prior(normal(0, 10),
class = b, coef = gender),
prior(cauchy(0, 10),
class = sd),
prior(cauchy(0, 10),
class = sigma),
prior(lkj(2), class = cor)
)

bmod4 <- brm(
distance ~ gender + (1|subj) +
(1 + gender|vowel),
data = indo, family = gaussian(),
prior = prior4,
warmup = 2000, iter = 10000
)

Estimates of this model are summarized in Table 5.
This summary reveals a negative correlation between the
intercepts and slopes for vowels, meaning that vowels with
a large “baseline level of variability” (i.e., with a large av-
erage distance value) tend to be pronounced with more
variability by females than by males. However, we notice
that this model’s estimation of β is even more uncertain
than that of the previous models, as shown by the associ-
ated standard error and the width of the credible interval.

Figure 6 illustrates the negative correlation between
the by-vowel intercepts and the by-vowel slopes, meaning
that vowels that tend to have higher “baseline variability”
(i.e., /e/, /o/, /a/) tend to show a stronger effect of gender.
This figure also illustrates the amount of shrinkage, here
in the parameter space. We can see that the partial pooling
d from: https://pubs.asha.org SUNY at Buffalo - Health Science Library on
estimate is shrunk somewhere between the no pooling esti-
mate and the complete pooling estimate (i.e., the grand
mean). This illustrates again the mechanism by which
MLMs balance the risk of overfitting and underfitting
(McElreath, 2016).

Varying Intercept and Varying Slope Model,
Interaction Between Subject and Vowel

So far, we modeled varying effects of subjects and
vowels. In this study, these varying factors were crossed,
meaning that every subject had to pronounce every vowel.
Let us now imagine a situation in which Subject 4 systemati-
cally mispronounced the /i/ vowel. This would be a source
of systematic variation over replicates, which is not considered
in the model (bmod4), because this model can only adjust
parameters for either vowel or participant, but not for a spe-
cific vowel for a specific participant.

In building the next model, we added a varying inter-
cept for the interaction between subject and vowel, that is,
we created an index variable that allocates a unique value at
each crossing of the two variables (Subject1–vowel/a/,
Subject1–vowel/i/, etc.), resulting in 8 × 5 = 40 intercepts
to be estimated (for a review of multilevel modeling in vari-
ous experimental designs, see Judd, Westfall, & Kenny, 2017).
This varying intercept for the interaction between subject
and vowel represents the systematic variation associated
with a specific subject pronouncing a specific vowel. This
model can be written as follows, for any observation i.

distancei ∼ Normal μi;σeð Þ
μi ¼ αþ αsubject i½ � þ αvowel i½ � þ αsubject:vowel i½ �

þ β þ βvowel i½ �
� �

� genderi
αvowel
βvowel

� �
∼MVNormal

0
0

� �
; S

� 	

S ¼ σ2
αvowel

σαvowelσβvowelρ
σαvowelσβvowelρ σ2βvowel

 !

αsubject ∼ Normal 0;σsubject
� �

αsubject:vowel ∼ Normal 0;σsubject:vowel
� �

α ∼ Normal 0; 10ð Þ
β ∼ Normal 0; 10ð Þ
σe ∼ HalfCauchy 10ð Þ

σsubject ∼ HalfCauchy 10ð Þ
σsubject:vowel ∼ HalfCauchy 10ð Þ

σαvowel ∼HalfCauchy 10ð Þ
σβvowel ∼ HalfCauchy 10ð Þ

R∼LKJcorr 2ð Þ

(11)
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Figure 6. Shrinkage of estimates in the parameter space due to the pooling of information between clusters (based on the bmod4 model). The
ellipses represent the contours of the bivariate distribution at different degrees of confidence: 0.1, 0.3, 0.5, and 0.7.

Dow
This model can be fitted with the following command:
Table 6. Posterior mean, standard error, 95% credible interval,
and ̂R statistic for each parameter of model bmod5 with a
varying intercept and a varying slope by vowel and a varying
intercept for the interaction between subject and vowel.

1236

nloade
prior5 <- c(
prior(normal(0, 10),
class = Intercept),
prior(normal(0, 10),
class = b, coef = gender),
prior(cauchy(0, 10),
class = sd),
prior(cauchy(0, 10),
class = sigma),
prior(lkj(2),
class = cor)
)

bmod5 <- brm(
distance ~ gender + (1|subj) + (1 +
gender|vowel) + (1|subj:vowel),
data = indo, family = gaussian(),
prior = prior5,
warmup = 2000, iter = 10000
)

Parameter M SE
Lower
bound

Upper
bound Rhat

α 0.163 0.038 0.087 0.236 1.000
β −0.042 0.030 −0.100 0.018 1.000
σsubject 0.012 0.009 0.001 0.033 1.000
σsubject:vowel 0.024 0.005 0.016 0.034 1.000
σαvowel 0.070 0.046 0.029 0.183 1.000
σβvowel

0.050 0.038 0.013 0.144 1.000
ρ −0.433 0.380 −0.946 0.454 1.000
σe 0.085 0.001 0.082 0.088 1.000
Estimates of this model are summarized in Table 6.
From this table, we first notice that the more varying effects
we add, the more the model is uncertain about the estima-
tion of α and β, which can be explained in the same way as
in Constant Effect of Gender on Vowel Production Vari-
ability section. Second, we see the opposite pattern for σe,
the residuals standard deviation, which has decreased by a
considerable amount compared to the first model, indicat-
ing a better fit.
Journal of Speech, Language, and Hearing Research • Vol. 62 •
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Model Comparison
Once we have built a set of models, we need to know

which model is the more accurate and should be used to
draw conclusions. It might be a little tricky to select the
model that has the better absolute fit on the actual data
(using for instance R2), as this model will not necessarily
perform as well on new data. Instead, we might want to
choose the model that has the best predictive abilities,
that is, the model that performs the best when it comes
to predicting data that have not yet been observed. We
call this ability the out-of-sample predictive performance
of the model (McElreath, 2016). When additional data
are not available, cross-validation techniques can be used
1225–1242 • May 2019
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Table 7. Model comparison with LOOIC.

Model LOOIC SE ΔLOOIC ΔSE Right side of the formula

bmod5 −3600.29 68.26 0.00 0.00 gender + (1 | subj) + (1 + gender | vowel) + (1 | subj:vowel)
bmod4 −3544.66 66.92 55.63 14.94 gender + (1 | subj) + (1 + gender | vowel)
bmod3 −3484.21 67.15 116.08 20.22 gender + (1 | subj) + (1 | vowel)
bmod2 −3119.41 65.32 480.88 39.50 gender + (1 | subj)
bmod1 −3103.43 66.72 496.86 40.52 gender

Dow
to obtain an approximation of the model’s predictive
abilities, among which the Bayesian leave-one-out cross-
validation (LOO-CV; Vehtari, Gelman, & Gabry, 2017).
Another useful tool and asymptotically equivalent to the
LOO-CV is the Watanabe Akaike Information Criterion
(WAIC; Watanabe, 2010), which can be conceived as
a generalization of the Akaike Information Criterion
(Akaike, 1974).8

Both WAIC and LOO-CV indexes are easily com-
puted in brms with the WAIC and the LOO functions,
where n models can be compared with the following call:
LOO (model1, model2, …, modeln). These functions
also provide an estimate of the uncertainty associated
with these indexes (in the form of a SE), as well as a differ-
ence score ΔLOOIC, which is computed by taking the dif-
ference between each pair of information criteria. The
WAIC and the LOO functions also provide an SE for these
delta values (ΔSE). A comparison of the five models we
fitted can be found in Table 7.

We see from Table 7 that bmod5 (i.e., the last model)
is performing much better than the other models, as it has
the lower LOOIC. We then based our conclusions (see
last section) on the estimations of this model. We also no-
tice that each addition to the initial model brought im-
provement in terms of predictive accuracy, as the set of
models is ordered from the first to the last model. This
should not be taken as a general rule though, as succes-
sive additions made to an original model could also
lead to overfitting, corresponding to a situation in which
the model is overspecified with regard to the data, which
makes the model good to explain the data at hand, but
very bad to predict nonobserved data. In such cases,
information criteria and indexes that rely exclusively
on goodness of fit (such as R2) would point to different
conclusions.
Comparison of brms and lme4 Estimations
Figure 7 illustrates the comparison of brms (Bayesian

approach) and lme4 (frequentist approach) estimates for
the last model (bmod5), fitted in lme4 with the following
command.
8More details on model comparison using cross-validation techniques
can be found in Nicenboim and Vasishth (2016). See also Gelman,
Hwang, and Vehtari (2014) for a complete comparison of information
criteria.
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lmer_model <- lmer(
distance ~ gender + (1|subj) + (1 +
gender|vowel) + (1|subj:vowel),
REML = FALSE, data = indo
)

Densities represent the posterior distribution as esti-
mated by brms along with 95% CrIs, whereas the crosses
underneath represent the maximum likelihood estimate from
lme4 along with 95% confidence intervals, obtained with
parametric bootstrapping.

We can see that the estimations of brms and lme4
are for the most part very similar. The differences we observe
for σαvowel and σβvowel might be explained by the skewness of
the posterior distribution. Indeed, in these cases (i.e., when
the distribution is not symmetric), the mode of the distribu-
tion would better coincide with the lme4 estimate. This
figure also illustrates a limitation of frequentist MLMs that
we discussed in the first part of the current tutorial. If we
look closely at the estimates of lme4, we can notice that
the maximum likelihood estimate for the correlation ρ is at
its boundary, as ρ = –1. This might be interpreted in (at
least) two ways. The first interpretation is what Eager and
Roy (2017) call the parsimonious convergence hypothesis and
consists in saying that this aberrant estimation is caused
by the overspecification of the random structure (e.g., Bates,
Kliegl, et al., 2015). In other words, this would correspond
to a model that contains too many varying effects to be sup-
ported by a certain data set (but this does not mean that,
with more data, this model would not be a correct model).
However, the parsimonious convergence hypothesis has
been questioned by Eager and Roy (2017), who have shown
that under conditions of unbalanced data sets, nonlinear
models fitted with lme4 provided more prediction errors
than Bayesian models fitted with Stan. The second inter-
pretation considers failures of convergence as a problem
of frequentist MLMs, which is resolved in the Bayesian
framework by using weakly informative priors (i.e., the
LKJ prior) for the correlation between varying effects
(e.g., Eager & Roy, 2017; Nicenboim & Vasishth, 2016)
and by using the full posterior for inference.

One feature of the BMLM in this kind of situation
is to provide an estimate of the correlation that incorpo-
rates the uncertainty caused by the weak amount of data
(i.e., by widening the posterior distribution). Thus, the brms
estimate of the correlation coefficient has its posterior
mean at ρ = –0.433, but this estimate comes with a huge
uncertainty, as expressed by the width of the credible in-
terval (95% CrI [–0.946, 0.454]).
Nalborczyk et al.: Introducing brms 1237
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9We compare the distribution with 0 here, but it should be noted that
this comparison could be made with whatever value.

Figure 7. Comparison of estimations from brms and lme4. Dots represent means of posterior distribution along with 95% credible intervals,
as estimated by the bmod5 model. Crosses represent estimations of lme4 along with bootstrapped 95% confidence intervals.

Dow
Inference and Conclusions
Regarding our initial question, which was to know

whether there is a gender effect on vowel production vari-
ability in standard Indonesian, we can base our conclusions
on several parameters and indices. However, the discrepan-
cies between the different models we fitted deserve some
discussion first. As already pointed out previously, if we
had based our conclusions on the results of the first model
(i.e., the model with constant effects only), we would have
confidently concluded on a positive effect of gender. How-
ever, when we included the appropriate error terms in the
model to account for repeated measurements by subject and
by vowel, as well as for the by-vowel specific effect of gender,
the large variability of this effect among vowels led the
model to adjust its estimation of β, resulting in more uncer-
tainty about it. The last model then estimated a value of
β = −0.04 with quite a large uncertainty (95% CrI [−0.10,
0.02]) and considering 0 as well as some positive values as
credible. This result alone makes it difficult to reach any
definitive conclusion concerning the presence or absence
of a gender effect on the variability of vowel pronunciation
in Indonesian and should be considered (at best) as
suggestive.

Nevertheless, it is useful to recall that, in the Bayes-
ian framework, the results of our analysis is a (posterior)
probability distribution, which can be, as such, summarized
in multiple ways. This distribution is plotted in Figure 8,
which also shows the mean and the 95% CrI, as well as the
proportion of the distribution below and above a particular
1238 Journal of Speech, Language, and Hearing Research • Vol. 62 •

nloaded from: https://pubs.asha.org SUNY at Buffalo - Health Science Library on
value.9 This figure reveals that 94.1% of the distribution is
below 0, which can be interpreted as suggesting that there is
a .94 probability that males have a lower mean formant
distance than females (recall that female was coded as
−0.5 and male as 0.5), given the data at hand and the
model.

This quantity can be easily computed from the poste-
rior samples:
1225–1

 04/01/
# extracting posterior samples
post <- posterior_samples(bmod5)
# computing p(beta< 0)
mean(post$b_gender < 0)
## [1] 0.940625
Of course, this estimate can (and should) be refined
using more data from several experiments, with more
speakers. In this line, it should be pointed out that brms
can easily be used to extend the multilevel strategy to
meta-analyses (e.g., Bürkner, Williams, Simmons, &
Woolley, 2017; Williams & Bürkner, 2017). Its flexibil-
ity makes it possible to fit multilevel hierarchical Bayesian
models at two, three, or more levels, enabling researchers
to model the heterogeneity between studies as well as
dependencies between experiments of the same study or
between studies carried out by the same research team.
Such a modeling strategy is usually equivalent to the
242 • May 2019
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Figure 8. Histogram of posterior samples of the slope for gender, as estimated by the last model. HDI = highest
density interval.

Dow
ordinary frequentist random-effect meta-analysis models,
while offering all the benefits inherent to the Bayesian
approach.

Another useful source of information comes from the
examination of effects sizes. One of the most used criteria
is Cohen’s d standardized effect size, which expresses the
difference between two groups in terms of their pooled
standard deviation:

Cohen’s d ¼ μ1 − μ2

σpooled
¼ μ1 − μ2ffiffiffiffiffiffiffiffiffiffiffiffi

σ2
1 þ σ2

2
2

q (12)

However, as the total variance is partitioned into mul-
tiple sources of variation in MLMs, there is no unique way
of computing a standardized effect size. Although several
Figure 9. Posterior distribution of δt. HDI = highest dens

nloaded from: https://pubs.asha.org SUNY at Buffalo - Health Science Library on
approaches have been suggested (e.g., dividing the mean
difference by the standard deviation of the residuals), the
more consensual one involves taking into account all of
the variance sources of the model (Hedges, 2007). One such
index is called the δt (where the t stands for “total”) and
is given by the estimated difference between group means,
divided by the square root of the sum of all variance
components:

δt ¼ βffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2
subject þ σ2

subject:vowel þ σ2
αvowel

þ σ2
βvowel

þ σ2
q (13)

As this effect size is dependent on the parameters
estimated by the model, one can derive a probability
ity interval.

Nalborczyk et al.: Introducing brms 1239

 04/01/2024, Terms of Use: https://pubs.asha.org/pubs/rights_and_permissions 



Dow
distribution for this index as well. This is easily done in R,
computing it from the posterior samples:
delta_

# e

post

# ta

muta

# di

# a

mut

baye
##
## R2

1240

nloade
t <-

xtracting posterior samples from bmod5

erior_samples(bmod5, pars = c("^b_", "sd_", "sigma") ) %>%

king the square of each variance component

te_at(.vars = 3:7, .funs = funs(.^2) ) %>%

viding the slope estimate by the square root of the sum of

ll variance components

ate(delta = b_gender / sqrt(rowSums(.[3:7]) ) )
This distribution is plotted in Figure 9 and reveals the
large uncertainty associated with the estimation of δt.

In the same fashion, undirected effect sizes (e.g., R2)
can be computed directly from the posterior samples or in-
cluded in the model specification as a parameter of the model
in a way that, at each iteration of the MCMC, a value of
the effect size is sampled, resulting in an estimation of its full
posterior distribution (for instance, see Gelman & Pardoe,
2006, for measures of explained variance in MLMs and
Marsman, Waldorp, Dablander, & Wagenmakers, 2017,
for calculations in ANOVA designs). A Bayesian version
of the R2 is also available in brms using the bayes_R2
method, for which the calculations are based on Gelman,
Goodrich, Gabry, and Ali (2017).
s_R2(bmod5)
Estimate Est.Error 2.5%ile 97.5%ile
0.295614 0.01589917 0.2635006 0.3262617
In brief, we found a weak effect of gender on vowel
production variability in Indonesian (β = −0.04, 95%
CrI = [−0.10, 0.02], δt = −0.34, 95% CrI = [−0.78, 0.11]),
this effect being associated with a large uncertainty (as expressed
by the width of the credible interval). This result seems to show
that females tend to pronounce vowels with more variability
than males, whereas the variation observed across vowels
(as suggested by σβvowel ) suggests that there might exist sub-
stantial intervowel variability that should be subsequently
properly studied. A follow-up analysis specifically designed
to test the effect of gender on each vowel should help better
describe intervowel variability (we give an example of such
an analysis in Supplemental Material S1).

To sum up, we hope that this introductive tutorial
has helped the reader to understand the foundational ideas
of BMLMs and to appreciate how straightforward the in-
terpretation of the results is. Moreover, we hope to have
demonstrated that, although Bayesian data analysis may
still sometimes (wrongfully) sound difficult to grasp and to
use, the development of recent tools such as brms helps
to build and fit BMLMs in an intuitive way. We believe that
this shift in practice will allow more reliable statistical in-
ferences to be drawn from empirical research.

Supplementary Materials
Supplementary materials and reproducible code and

figures are available at: https://osf.io/dpzcb/. A lot of useful
Journal of Speech, Language, and Hearing Research • Vol. 62 •

d from: https://pubs.asha.org SUNY at Buffalo - Health Science Library on
packages have been used for the writing of this tutorial,
among which are the papaja and knitr packages for
writing and formatting (Aust & Barth, 2017; Xie, 2015); the
ggplot2, viridis, ellipse, BEST, and ggridges
packages for plotting (Garnier, 2017; Kruschke & Meredith,
2018; Murdoch & Chow, 2013; Wickham, 2009; Wilke,
2017); and the tidyverse and broom packages for code
writing and formatting (Robinson, 2017; Wickham, 2017).
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