
CH APTER 11

Multilevel structures

As we illustrate in detail in subsequent chapters, multilevel models are extensions 
of regression in which data are structured in groups and coefficients can vary by 
group. In this chapter, we illustrate basic multilevel models and present several 
examples of data that are collected and summarized at different levels. We start with 
simple grouped data—persons within cities—where some information is available 
on persons and some information is at the city level. We then consider examples of 
repeated measurements, time-series cross sections, and non-nested structures. The 
chapter concludes with an outline of the costs and benefits of multilevel modeling 
compared to classical regression.

11.1 Varying-intercept and varying-slope models

With grouped data, a regression that includes indicators for groups is called a 
varying-intercept model because it can be interpreted as a model with a different 
intercept within each group. Figure 1 1 .1 a illustrates with a model with one contin­
uous predictor x and indicators for J  =  5 groups. The model can be written as a 
regression with 6 predictors or, equivalently, as a regression with two predictors (x 
and the constant term), with the intercept varying by group:

varying-intercept model: yi =  +  (3xi +  e*.

Another option, shown in Figure 1 1 .1 b, is to let the slope vary with constant inter­
cept:

varying-slope model: yi =  a  +  0j[i]Xi +  e*.
Finally, Figure 11.1c shows a model in which both the intercept and the slope vary 
by group:

varying-intercept, varying-slope model: yi =  a ^  +  (dj\i)Xi +  e*.

The varying slopes are interactions between the continuous predictor x and the 
group indicators.

As we discuss shortly, it can be challenging to estimate all these a/ s and f3j's, 
especially when inputs are available at the group level. The first step of multilevel 
modeling is to set up a regression with varying coefficients; the second step is to 
set up a regression model for the coefficients themselves.

11.2 Clustered data: child support enforcement in cities
With multilevel modeling we need to go beyond the classical setup of a data vector 
y and a matrix of predictors X  (as shown in Figure 3.6 on page 38). Each level of 
the model can have its own matrix of predictors.

We illustrate multilevel data structures with an observational study of the effect 
of city-level policies on enforcing child support payments from unmarried fathers. 
The treatment is at the group (city) level, but the outcome is measured on individual 
families.
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Varying intercepts Varying slopes Varying intercepts and slopes

Figure 11.1 Linear regression models with (a) varying intercepts (y = otj+fix ) ,  (b) varying 
slopes (y =  a  +  P jx ) ,  and (c) both (y = a j  -f fi jx ).  The varying intercepts correspond to 
group indicators as regression predictors, and the varying slopes represent interactions 
between x  and the group indicators.

ID
dad
age

m om
race

inform al
su p p ort

city
ID

city
nam e

enforce
intensity

benefit
level

c ity  indicators  
1 2 • ■ ■ 20

1 19 hisp 1 1 O akland 0 .52 1.01 1 0 •• 0
2 27 black 0 1 O akland 0 .52 1.01 1 0 •• 0
3 26 black 1 1 O akland 0 .5 2 1.01 1 0 •• 0

248 19 w hite 1 3 B altim o re 0 .0 5 1.10 0 0 •• 0
249 26 black 1 3 B altim o re 0 .0 5 1.10 0 0 •• 0

1366 21 black 1 20 Norfolk - 0.11 1.08 0 0 ■ 1
1367 28 hisp 0 20 Norfolk - 0.11 1 .08 0 0 •• 1

Figure 11.2 Some of the data from the child support study, structured as a single v.atrix 
with one row for each person. These indicators would be used in classical regression to 
allow for variation among cities. In a multilevel model they are not necessary, as wo. code 
cities using their index variable ( “city ID”) instead. We prefer separating the data into 
individual-level and city-level datasets, as in Figure 11.3.

Studying the effectiveness o f child support enforcement

Cities and states in the United States have tried a variety of strategies to encorrage 
or force fathers to give support payments for children with parents who live apart. 
In order to study the effectiveness of these policies for a particular subset of high- 
risk children, an analysis was done using a sample of 1367 noncohabiting parents 
from the Fragile Families study, a survey of unmarried mothers of newborns in 
20 cities. The survey was conducted by sampling from hospitals which themselves 
were sampled from the chosen cities, but here we ignore the complexities of the 
data collection and consider the mothers to have been sampled at random ( :rom 
their demographic category) in each city.

To estimate the effect of child support enforcement policies, the key “treatment'’ 
predictor is a measure of enforcement policies, which is available at the city level. 
The researchers estimated the probability that the mother received informal sup­
port, given the city-level enforcement measure and other city- and individual-level 
predictors.
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ID
dad
age

mom
race

informal
support

city
ID

1 19 hisp 1 1
2 27 black 0 1
3 26 black 1 1

248 19 white 1 3
249 26 black 1 3

1366 21 black 1 20
1367 28 hisp 0 20

city
ID

city
name

enforce­
ment

benefit
level

1 Oakland 0.52 1.01
2 Austin 0.00 0.75
3 Baltim ore - 0 .0 5 1.10

20 Norfolk - 0 .1 1 1.08

Figure 11.3 Data from the child support study, structured as two matrices, one for persons 
and one for cities. The inputs at the different levels are now clear. Compare to Figure 11.2.

A data matrix fo r  each level o f the model

Figure 1 1 .2  shows the data for the analysis as it might be stored in a computer 
package, with information on each of the 1367 mothers surveyed. To make use 
of the multilevel structure of the data, however, we need to construct two data 
matrices, one for each level of the model, as Figure 11.3 illustrates. At the left is 
the person-level data matrix, with one row for each survey respondent, and their 
cities are indicated by an index variable; at the right is the city data matrix, giving 
the name and other information available for each city.

At a practical level, the two-matrix format of Figure 11.3 has the advantage 
that it contains each piece of information exactly once. In contrast, the single large 
matrix in Figure 1 1 .2  has each city’s data repeated several times. Computer memory 
is cheap so this would not seem to be a problem; however, if city-level information 
needs to be added or changed, the single-matrix format invites errors.

Conceptually, the two-matrix, or multilevel, data structure has  the advantage of 
clearly showing which information is available on individuals and which on cities. It 
also gives more flexibility in fitting models, allowing us to move beyond the classical 
regression framework.

Individual- and group-level models

We briefly outline several possible ways of analyzing these data, as a motivation 
and lead-in to multilevel modeling.

Individual-level regression. In the most basic analysis, informal support (as re­
ported by mothers in the survey) is the binary outcome, and there are several 
individual- and city-level predictors. Enforcement is considered as the treatment, 
and a logistic regression is used, also controlling for other inputs. This is the starting 
point of the observational study.

Using classical regression notation, the model is P r(yi =  1) =  logit_ 1 (X*/3), where 
X  includes the constant term, the treatment (enforcement intensity), and the other 
predictors (father’s age and indicators for mother’s race at the individual level; 
and benefit level at the city level). X  is thus constructed from the data matrix of 
Figure 11.2. This individual-level regression has the problem that it ignores city- 
level variation beyond that explained by enforcement intensity and benefit level, 
which are the city-level predictors in the model.
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city

ID
city

name
enforce­

ment
benefit

level
#  in

sample
avg.
age

prop.
black

proportion with 
informal support

1 Oakland 0.52 1.01 78 25.9 0.67 0.55
2 Austin 0.00 0.75 91 25.8 0.42 0.54
3 Baltim ore - 0 .0 5 1.10 101 27.0 0.86 0.67

20 Norfolk - 0 .1 1 1.08 31 27.4 0.84 0.65

Figure 11.4 City-level data from child support study (as in the right panel of Figure 11.3), 
also including sample sizes and sample averages from the individual responses.

Group-level regression on city averages. Another approach is to perform a citv- 
level analysis, with individual-level predictors included using their group-level av­
erages. Figure 11.4 illustrates: here, the outcome, y j , would be the average total 
support among the respondents in city j ,  the enforcement indicator would be the 
treatment, and the other variables would also be included as predictors. Such a 
regression—in this case, with 20 data points— has the advantage that its errors are 
automatically at the city level. However, by aggregating, it removes the ability of 
individual predictors to predict individual outcomes. For example, it is possible that 
older fathers give more informal support—but this would not necessarily translate 
into average father’s age being predictive of more informal support at the city eve\.

Individual-level regression with city indicators, followed by group-level regression of 
the estimated city effects. A slightly more elaborate analysis proceeds in two steps, 
first fitting a logistic regression to the individual data y given individual predictors 
(in this example, father’s age and indicators for mother’s race) along with indicators 
for the 20 cities. This first-stage regression then has 22 predictors. (The constant 
term is not included since we wish to include indicators for all the cities; see the 
discussion at the end of Section 4.5.)

The next step in this two-step analysis is to perform a linear regression at the city 
level, considering the estimated coefficients of the city indicators (in the indiv.dual 
model that was just fit) as the “data” yj. This city-level regression has 20 data points 
and uses, as predictors, the city-level data (in this case, enforcement intensity and 
benefit level). Each of the predictors in the model is thus included in one of the two 
regressions.

The two-step analysis is reasonable in this example but can run into problems 
when sample sizes are small in particular groups, or when there are interactions be­
tween individual- and group-level predictors. Multilevel modeling is a more general 
approach that can include predictors at both levels at once.

Multilevel models

The multilevel model looks something like the two-step model we have described, 
except that both steps are fitted at once. In this example, a simple multilevel model 
would have two components: a logistic regression with 1369 data points predicting 
the binary outcome given individual-level predictors and with an intercept that can 
vary by city, and a linear regression with 20 data points predicting the city intercepts 
from city-level predictors. In the multilevel framework, the key link betweer the 
individual and city levels is the city indicator—the “city ID” variable in Figure
11.3, which takes on values between 1 and 20.



For this example, we would have a logistic regression at the data level:

P r(yi =  l)  = lo g it_ 1 (X i/3 +  a j[i]), for i =  (1 1 .1 )

where X  is the matrix of individual-level predictors and j  [i] indexes the city where 
person i resides. The second part of the model—what makes it “multilevel”—is the 
regression of the city coefficients:

ai ~  N(£/j 7 , o*),  for j  = 1 , . . . ,  20, (1 1 .2 )

where U is the matrix of city-level predictors, 7  is the vector of coefficients for the 
city-level regression, and cra is the standard deviation of the unexplained group-level 
errors.

The model for the a ’s in (11.2) allows us to include all 20 of them in model (1 1 .1 ) 
without having to worry about collinearity. The key is the group-level variation 
parameter cra , which is estimated from the data (along with a , /?, and a) in the 
fitting of the model. We return to this point in the next chapter.

REPEATED MEASUREMENTS AND NON-NESTED STRUCTURES 241

Directions fo r  the observational study

The “treatment” variable in this example is not randomly applied; hence it is quite 
possible that cities that differ in enforcement intensities could differ in other impor­
tant ways in the political, economic, or cultural dimensions. Suppose the goal were 
to estimate the effects of potential interventions (such as increased enforcement), 
rather than simply performing a comparative analysis. Then it would make sense 
to set this up as an observational study, gather relevant pre-treatment information 
to capture variation among the cities, and perhaps use a matching approach to 
estimate effects. In addition, good pre-treatment measures on individuals should 
improve predictive power, thus allowing treatment effects to be estimated more 
accurately. The researchers studying these child support data are also looking at 
other outcomes, including measures of the amity between the parents as well as 
financial and other support.

Along with the special concerns of causal inference, the usual recommendations of 
regression analysis apply. For example, it might make sense to consider interactions 
in the model (to see if enforcement is more effective for older fathers, for example).

11.3 Repeated measurements, time-series cross sections, and other 
non-nested structures

Repeated measurements

Another kind of multilevel data structure involves repeated measurements on per­
sons (or other units)— thus, measurements are clustered within persons, and pre­
dictors can be available at the measurement or person level. We illustrate with a 
model fitted to a longitudinal dataset of about 2000 Australian adolescents whose 
smoking patterns were recorded every six months (via questionnaire) for a period of 
three years. Interest lay in the extent to which smoking behavior can be predicted 
based on parental smoking and other background variables, and the extent to which 
boys and girls pick up the habit of smoking during their teenage years. Figure 11.5 
illustrates the overall rate of smoking among survey participants.

A multilevel logistic regression was fit, in which the probability of smoking de­
pends on sex, parental smoking, the wave of the study, and an individual parameter
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Figure 11.5 Prevalence of regular (daily) smoking among participants responding at each 
wave in the study of Australian adolescents (who were on average 15 years old at wave 1).

person parents smoke? wave 1 wave 2
ID sex mom dad age smokes? age smokes?

1 f Y Y 15:0 N 15:6 N
2 f N N 14:7 N 15:1 N
3 m Y N 15:1 N 15:7 Y
4 f N N 15:3 N 15:9 N

Figure 11.6 Data from the smoking study as they might be stored in a single computer 
file and read into R as a matrix, d a ta . (Ages are in years .‘months.) These data have a 
multilevel structure, with observations nested within persons.

for the person. For person j  at wave t, the modeled probability of smoking is

Pr (yjt =  1) =  logit- 1  (Po +  /Jipsmokej- +  ^  female j  T
+/?3(1  — female^) • t +  /?4 female j  • t +  a.,), ( 1 1.3)

where psmoke is the number of the person’s parents who smoke and fem ale is an 
indicator for females, so that /?3 and /?4 represent the time trends for boys and girls, 
respectively.1

Figures 11.6 and 11.7 show two ways of storing the smoking data, either of which 
would be acceptable for a multilevel analysis. Figure 11.6 shows a single data matrix, 
with one row for each person in the study. We could then pull out the smoking 
outcome y =  (yjt) in R, as follows:

R  code y <- d a ta [,seq (6 ,16,2)]
female <- ifelse (data[,2]=="f", 1 , 0 ) 
mom.smoke <- ifelse (data[,3]=="YH, 1 ,  0) 
dad.smoke <- ifelse (data[,4]=="Y", 1, 0) 
psmoke <- mom.smoke + dad.smoke

and from there fit the model (11.3).
Figure 11.7 shows an alternative approach using two data matrices, one wioh a

1 A ltern ativ ely , we could include a  m ain effect for tim e and an in teraction  between tim e and sex, 
P r  (yjt =  1) =  logit ~1(0o +  01 • psm oke j +  02 • fem ale j +  03 • t + 04 • female., • t + aj), so th a t  
th e  tim e tren d s for boys and girls are  03 and 03 +04, respectively. T h is p aram eterizatio n  is 
ap p ro p riate  to  th e  ex ten t th a t th e  com parison betw een th e  sexes is of in terest; in th is case we 
used (1 1 .3 ) so th a t we could easily in terp ret 03 and 04 sym m etrically.
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age smokes?
person

ID wave

15:0 N 1 1
14.7 N 2 1
15:1 N 3 1
15:3 N 4 1

15:6 N 1 2
15:1 N 2 2
15:7 Y 3 2
15:9 N 4 2

person parents smoke?
ID sex mom dad

1 f Y Y
2 f N N
3 m Y N
4 f N N

Figure 11.7 Data from the smoking study, with observational data written as a single long 
matrix, o b s .d a ta , with person indicators, followed by a shorter matrix, p e rs o n .d a ta , of 
person-level information. Compare to Figure 11.6.

row for each observation and one with a row for each person. To model these data, 
one could use R  code such as

y <- obs.data[,2] 
person <- obs.data[,3] 
wave <- obs.data[,4]
female <- ifelse (person.data[,2]=="f", 1, 0) 
mom.smoke <- ifelse (person.data[,3]=="Y", 1, 0) 
dad.smoke <- ifelse (person.data[,4]=="Y", 1, 0) 
psmoke <- mom.smoke + dad.smoke

and then parameterize the model using the index i to represent individual observa­
tions, with j[i] and t[i] indicating the person and wave associated with observation

Pr(yi =  l) =  logit 1(/?0 + /?i psmoke^] + /?2 female^*] +

+  /?3(1 — female^]) • t[i] +  /?4female^] • t[i] +  ). (11.4)

Models (11.3) and (11.4) are equivalent, and both can be fit in Bugs (as we 
describe in Part 2B). Choosing between them is a matter of convenience. For data 
in a simple two-way structure (each adolescent is measured at six regular times), it 
can make sense to work with the double-indexed outcome variable, (yjt). For a less 
rectangular data structure (for example, different adolescents measured at irregular 
intervals) it can be easier to string together a long data vector (y*), with person 
and time recorded for each measurement, and with a separate matrix of person-level 
information (as in Figure 11.7).

Time-series cross-sectional data

In settings where overall time trends are important, repeated measurement data are 
sometimes called time-series cross-sectional. For example, Section 6.3 introduced a 
study of the proportion of death penalty verdicts that were overturned, in each of 
34 states in the 23 years, 1973-1995. The data come at the state x year levels but 
we are also interested in studying variation among states and over time.

Time-series cross-sectional data are typically (although not necessarily) “rectan­
gular” in structure, with observations at regular time intervals. In contrast, gen­

R  code
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eral repeated measurements could easily have irregular patterns (for example, in 
the smoking study, some children could be measured only once, others could be 
measured monthly and others yearly). In addition, time-series cross-sectional data 
commonly have overall time patterns, for example, the steady expansion <:f the 
death penalty from the 1970s through the early 1990s. In this context one must 
consider the state-year data as clustered within states and also within years, with 
the potential for predictors at all three levels. We discuss such non-nested models 
in Section 13.5.

Other non-nested structures

Non-nested data also arise when individuals are characterized by overlapping cate­
gories of attributes. For example, consider a study of earnings given occupation and 
state of residence. A survey could include, say, 1500 persons in 40 job categories 
in 50 states, and a regression model could predict log earnings given individual 
demographic predictors X , 40 indicators for job categories, and 50 state indicators. 
We can write the model generalizing the notation of (1 1 .1 )—(1 1 .2):

Vi =  XiP + otj[i\ + 7 ;fe[t] +  for % =  1 , . . .  ,n,  (11.5)
where j[i\ and k[i\ represent the job category and state, respectively, for person i. 
The model becomes multilevel with regressions for the job and state coefficients. 
For example,

<Xj ~ N (U ja ,a l) ,  for j  =  1, - . . ,  40, (11.6)

where U is a matrix of occupation-level predictors (for example, a measure of social 
status and an indicator for whether it is supervisory), a is a vector of coefficients 
for the job model, and cra is the standard deviation of the model errors at the level 
of job category. Similarly, for the state coefficients:

7k ~  N(Vfe0 , o*)  for k  =  1 , . . . ,  50. ( 11.7)

The model defined by regressions (11.5)—(11.7) is non-nested because neither the 
job categories j[i] nor the states k[i\ are subsets of the other.

As this example illustrates, regression notation can become awkward with mul­
tilevel models because of the need for new symbols (1/, V , a, #, and so forth) to 
denote data matrices, coefficients, and errors at each level.

11.4 Indicator variables and fixed or random effects

Classical regression: including a baseline and J  — 1 indicator variables

As discussed at the end of Section 4.5, when including an input variable with 
J  categories into a classical regression, standard practice is to choose one o: the 
categories as a baseline and include indicators for the other J  — 1 categories For 
example, if controlling for the J  =  20 cities in the child support study in Figure 11.2 
on page 238, one could set city 1 (Oakland) as the baseline and include indicators 
for the other 19. The coefficient for each city then represents its comparison to 
Oakland.

Multilevel regression: including all J  indicators

In a multilevel model it is unnecessary to do this arbitrary step of picking one of 
the levels as a baseline. For example, in the child support study, one would include
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indicators for all 20 cities as in model (11.1). In a classical regression these could 
not all be included because they would be collinear with the constant term, but in 
a multilevel model this is not a problem because they are themselves modeled by a 
group-level distribution (which itself can be a regression, as in (11.2)). We discuss 
on page 393 how the added information removes the collinearity that is present in 
the simple least squares estimate.

Fixed and random effects

The varying coefficients ( a f s  or /3/s) in a multilevel model are sometimes called 
random effects, a term that refers to the randomness in the probability model for 
the group-level coefficients (as, for example, in (11.2) on page 241).

The term fixed effects is used in contrast to random effects—but not in a con­
sistent way! Fixed effects are usually defined as varying coefficients that are not 
themselves modeled. For example, a classical regression including J  — 1 =  19 city 
indicators as regression predictors is sometimes called a “fixed-effects model” or a 
model with “fixed effects for cities.” Confusingly, however, “fixed-effects models” 
sometimes refer to regressions in which coefficients do not vary by group (so that 
they are fixed, not random) .2

A question that commonly arises is when to use fixed effects (in the sense of vary­
ing coefficients that are unmodeled) and when to use random effects. The statistical 
literature is full of confusing and contradictory advice. Some say that fixed effects 
are appropriate if group-level coefficients are of interest, and random effects are 
appropriate if interest lies in the underlying population. Others recommend fixed

2 Here we outline five definitions th a t we have seen of fixed and random  effects:

1. F ixed  effects are co n stan t across individuals, and random  effects vary. For exam ple, in a  grow th  
study, a  m odel w ith random  in tercep ts a*  and fixed slope (3 corresponds to  parallel lines for 
different individuals i, or th e m odel yu =  on +  fit. K reft and De Leeuw  (1 9 9 8 , p. 12) thus  
distinguish betw een fixed and random  coefficients.

2. Effects are  fixed if th ey  are  in teresting in them selves or random  if th ere  is in terest in th e  un­
derlying population. Searle, C asella, and M cC ulloch  (1 9 9 2 , section  1 .4 ) explore th is distinction  
in depth .

3. “W h en  a  sam ple exh au sts th e popu lation , th e corresponding variab le is fixed; when th e sam ple  
is a  sm all (i.e ., negligible) p art of th e  population th e  corresponding variable is random” (G reen  
and Tukey, 1960).

4. “If an effect is assum ed to  be a  realized value of a  random  variable, it is called a  random  effect” 
(L aM o tte , 1983).

5. F ixed  effects are estim ated  using least squares (o r, m ore generally, m axim u m  likelihood) and  
random  effects are  estim ated  w ith shrinkage ( “linear unbiased prediction” in th e  term inology  
of Robinson, 1991). T h is definition is s tan d ard  in th e  m ultilevel m odeling lite ra tu re  (see, for 
exam ple, Snijders and Bosker, 1999 , section 4 .2 )  and in econom etrics.

In a  m ultilevel m odel, th is definition im plies th a t fixed effects /3j are  estim ated  cond itional on a  
group-level varian ce crp =  oo and random  effects ¡3j are  estim ated  conditional on ap  estim ated  
from  d a ta .

O f th ese definitions, th e  first clearly  stan d s a p a rt, bu t th e o th er four definitions differ also. 
U nder th e second definition, an effect can  change from  fixed to  random  w ith a  change in th e  
goals of inference, even if th e  d a ta  and design are  unchanged. T h e  th ird  definition differs from  
th e o th ers in defining a  finite popu lation  (while leaving open th e  question of w h at to  do w ith  
a large bu t not exh au stive sam p le), while th e  fourth  definition m akes no reference to  an actu al  
(ra th er th an  m a th em atica l) population a t all. T h e  second definition allows fixed effects to  com e  
from  a  distribution , as long as th a t distribution  is not of in terest, w hereas th e  fourth  and fifth 
do not use any d istribution  for inference ab o u t fixed effects. T h e fifth definition has th e v irtu e  
of m ath em atical precision but leaves unclear when a  given set of effects should be considered  
fixed or random . In sum m ary, it is easily possible for a  factor to  be “fixed” accord in g to  som e  
definitions above and “ran d om ” for others. B ecau se of th ese conflicting definitions, it is no 
surprise th a t “clear answ ers to  th e  question ‘fixed or ran d o m ?’ are  not necessarily th e n orm ” 
(S earle, C asella, and M cC ulloch, 1992 , p. 15).
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effects when the groups in the data represent all possible groups, and random effects 
when the population includes groups not in the data. These two recommendations 
(and others) can be unhelpful. For example, in the child support example, we are 
interested in these particular cities and also the country as a whole. The cities are 
only a sample of cities in the United States— but if we were suddenly given data 
from all the other cities, we would not want then to change our model.

Our advice (elaborated upon in the rest of this book) is to always use multilevel 
modeling ( “random effects”). Because of the conflicting definitions and advice, we 
avoid the terms “fixed” and “random” entirely, and focus on the description of 
the model itself (for example, varying intercepts and constant slopes), with the 
understanding that batches of coefficients (for example, a i , . . . ,  a j )  will themselves 
be modeled.

11.5 Costs and benefits of multilevel modeling

Quick overview of classical regression

Before we go to the effort of learning multilevel modeling, it is helpful to briefly 
review what can be done with classical regression:
• Prediction for continuous or discrete outcomes,
• Fitting of nonlinear relations using transformations,
• Inclusion of categorical predictors using indicator variables,
• Modeling of interactions between inputs,
• Causal inference (under appropriate conditions).

Motivations fo r  multilevel modeling

There are various reasons why it might be worth moving to a multilevel model, 
whether for purposes of causal inference, the study of variation, or prediction of 
future outcomes:
• Accounting for individual- and group-level variation in estimating group-level 

regression coefficients. For example, in the child support study in Section LI.2, 
interest lies in a city-level predictor (child support enforcement), and in classi­
cal regression it is not possible to include city indicators along with city-Level 
predictors.

• Modeling variation among individual-level regression coefficients. In classical re­
gression, one can do this using indicator variables, but multilevel modeling is 
convenient when we want to model the variation of these coefficients ac ross 
groups, make predictions for new groups, or account for group-level variation in 
the uncertainty for individual-level coefficients.

• Estimating regression coefficients for particular groups. For example, in the lext 
chapter, we discuss the problem of estimating radon levels from measurements 
in several counties in Minnesota. With a multilevel model, we can get reasonable 
estimates even for counties with small sample sizes, which would be difficult 
using classical regression.

One or more of these reasons might apply in any particular study.

Complexity o f multilevel models

A potential drawback to multilevel modeling is the additional complexity of cc effi­
cients varying by group. We do not mind this complexity— in fact, we embrace it
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in its realism—however, it does create new difficulties in understanding and sum­
marizing the model, issues we explore in Part 3 of this book.

Additional modeling assumptions

As we discuss in the next few chapters, a multilevel model requires additional 
assumptions beyond those of classical regression— basically, each level of the model 
corresponds to its own regression with its own set of assumptions such as additivity, 
linearity, independence, equal variance, and normality.

We usually don’t mind. First, it can be possible to check these assumptions. 
Perhaps more important, classical regressions can typically be identified with par­
ticular special cases of multilevel models with hierarchical variance parameters set 
to zero or infinity— these are the complete pooling and no pooling models discussed 
in Sections 12 .2  and 12.3. Our ultimate justification, which can be seen through ex­
amples, is that the assumptions pay off in practice in allowing more realistic models 
and inferences.

When does multilevel modeling make a difference?

The usual alternative to multilevel modeling is classical regression— either ignor­
ing group-level variation, or with varying coefficients that are estimated classically 
(and not themselves modeled)— or combinations of classical regressions such as the 
individual and group-level models described on page 239.

In various limiting cases, the classical and multilevel approaches coincide. When 
there is very little group-level variation, the multilevel model reduces to classical 
regression with no group indicators; conversely, when group-level coefficients vary 
greatly (compared to their standard errors of estimation), multilevel modeling re­
duces to classical regression with group indicators.

When the number of groups is small (less than five, say), there is typically not 
enough information to accurately estimate group-level variation. As a result, multi­
level models in this setting typically gain little beyond classical varying-coefficient 
models.

These limits give us a sense of where we can gain the most from multilevel 
modeling— where it is worth the effort of expanding a classical regression in this 
way. However, there is little risk from applying a multilevel model, assuming we are 
willing to put in the effort to set up the model and interpret the resulting inferences.

11.6 Bibliographic note

Several introductory books on multilevel models have been written in the past 
decade in conjunction with specialized computer programs (see Section 1.5), in­
cluding Raudenbush and Bryk (2002), Goldstein (1995), and Snijders and Bosker 
(1999). Kreft and De Leeuw (1998) provide an accessible introduction and a good 
place to start (although we do not agree with all of their recommendations). These 
books have a social science focus, perhaps because it is harder to justify the use 
of linear models in laboratory sciences where it is easier to isolate the effects of 
individual factors and so the functional form of responses is better understood. 
Giltinan and Davidian (1995) and Verbeke and Molenberghs (2000) are books on 
nonlinear multilevel models focusing on biostatistical applications.

Another approach to regression with multilevel data structures is to use classical 
estimates and then correct the standard errors to deal with the dependence in the
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data. We briefly discuss the connection between multilevel models and correlated- 
error models in Section 12.5 but do not consider these other inferential met nods, 
which include generalized estimating equations (see Carlin et al., 2001, for a com­
parison to multilevel models) and panel-corrected standard errors (see Beck and 
Katz, 1995, 1996).

The articles in the special issue of Political Analysis devoted to multilevel mod­
eling (Kedar and Shively, 2005) illustrate several different forms of analysis of mul­
tilevel data, including two-level classical regression and multilevel modeling.

Gelman (2005) discusses difficulties with the terms “fixed” and “random” effects. 
See also Kreft and De Leeuw (1998, section 1.3.3), for a discussion of the multiplicity 
of definitions of fixed and random effects and coefficients, and Robinson (1998) for 
a historical overview.

The child support example comes from Nepomnyaschy and Garfinkel (2005) The 
teenage smoking example comes from Carlin et al. (2001), who consider several 
different models, including a multilevel logistic regression.

11.7 Exercises

1. The file a p t.d a t in the folder rodents contains data on rodent infestation in 
a sample of New York City apartments (see codebook rod ents.d o c). The file 
d i s t . dat contains data on the 55 “community districts” (neighborhoods) i:i the 
city.

(a) Write the notation for a varying-intercept multilevel logistic regression (with 
community districts as the groups) for the probability of rodent infestation 
using the individual-level predictors but no group-level predictors.

(b) Expand the model in (a) by including the variables in d i s t . dat as group-level 
predictors.

2. Time-series cross-sectional data: download data with an outcome y and predic­
tors X  in each of J  countries for a series of K  consecutive years. The outcome 
should be some measure of educational achievement of children and the predic­
tors should be a per capita income measure, a measure of income inequality, and 
a variable summarizing how democratic the country is. For these countries, also 
create country-level predictors that are indicators for the countries’ geographic 
regions.

(a) Set up the data as a wide matrix of countries x measurements (as in Figure
11.6).

(b) Set up the data as two matrices as in Figure 11.7: a long matrix with J K  
rows with all the measurements, and a matrix with J  rows, with information 
on each country.

(c) Write a multilevel regression as in (11.5)—(11.7). Explain the meaning of all 
the variables in the model.

3. The folder Olympics has seven judges’ ratings of seven figure skaters (on two cri­
teria: “technical merit” and “artistic impression”) from the 1932 Winter Olympics

(a) Construct a 7 x 7 x 2 array of the data (ordered by skater, judge, and judging 
criterion).

(b) Reformulate the data as a 98 x 4 array (similar to the top table in Figure 1 L.7), 
where the first two columns are the technical merit and artistic impression 
scores, the third column is a skater ID, and the fourth column is a judge ID.



EXERC ISES 249

(c) Add another column to this matrix representing an indicator variable that 
equals 1 if the skater and judge are from the same country, or 0 otherwise.

4. The folder cd4 has CD4 percentages for a set of young children with HIV who 
were measured several times over a period of two years. The dataset also includes 
the ages of the children at each measurement.

(a) Graph the outcome (the CD4 percentage, on the square root scale) for each 
child as a function of time.

(b) Each child’s data has a time course that can be summarized by a linear fit. 
Estimate these lines and plot them for all the children.

(c) Set up a model for the children’s slopes and intercepts as a function of 
the treatment and age at baseline. Estimate this model using the two-step 
procedure-first estimate the intercept and slope separately for each child, then 
fit the between-child models using the point estimates from the first step.


