
CH APTER 12

Multilevel linear models: the basics

Multilevel modeling can be thought of in two equivalent ways:
• We can think of a generalization of linear regression, where intercepts, and possi­

bly slopes, are allowed to vary by group. For example, starting with a regression 
model with one predictor, yi =  a  [3xi +  e*, we can generalize to the varying- 
intercept model, yi =  j -1- (3xi +  a ,  and the varying-intercept, varying-slope 
model, yi =  +  0j[i\Xi +  e* (see Figure 11.1 on page 238).

© Equivalently, we can think of multilevel modeling as a regression that includes a 
categorical input variable representing group membership. From this perspective, 
the group index is a factor with J  levels, corresponding to J  predictors in the 
regression model (or 2 J  if they are interacted with a predictor x in a varying- 
intercept, varying-slope model; or 3 J  if they are interacted with two predictors 
X (1) ,X (2); and so forth).

In either case, J —1 linear predictors are added to the model (or, to put it another 
way, the constant term in the regression is replaced by J  separate intercept terms). 
The crucial multilevel modeling step is that these J  coefficients are then themselves 
given a model (most simply, a common distribution for the J  parameters a j  or, 
more generally, a regression model for the a/ s given group-level predictors). The 
group-level model is estimated simultaneously with the data-level regression of y.

This chapter introduces multilevel linear regression step by step. We begin in 
Section 12.2 by characterizing multilevel modeling as a compromise between two 
extremes: complete pooling, in which the group indicators are not included in the 
model, and no pooling, in which separate models are fit within each group. After 
laying out some notational difficulties in Section 12.5, we discuss in Section 12.6 the 
different roles of the individual- and group-level regressions. Chapter 13 continues 
with more complex multilevel structures.

12.1 Notation

We briefly review the notation for classical regression and then outline how it can 
be generalized for multilevel models. As we illustrate in the examples, however, no 
single notation is appropriate for all problems. We use the following notation for 
classical regression:
• Units i =  1 , . . . ,  n. By units, we mean the smallest items of measurement.
• Outcome measurements y =  ( y i , . . . ,  yn)- These are the unit-level data being 

modeled.
• Regression predictors are represented by an n x k matrix A , so that the vector

of predicted values is y =  X/3, where y and (3 are column vectors of length n 
and k, respectively. We include in X  the constant term (unless it is explicitly 
excluded from the model), so that the first column of X  is all l ’s. We usually 
label the coefficients as /3o , . . . ,  but sometimes we index from 1 to k.

• For each individual unit i , we denote its row vector of predictors as X{. Thus, 
yi =  Xi(3 is the prediction for unit i.
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• For each predictor ac, we label the column of X  as (assuming that
X (0) is a column of l ’s).

• Any information contained in the unit labels i should be coded in the regres­
sion inputs. For example, if i =  1 , . . .  , n represents the order in which persons 
i enrolled in a study, we should create a time variable U and, for example, in­
clude it in the matrix X  of regression predictors. Or, more generally, consider 
transformations and interactions of this new input variable.

For multilevel models, we label:
• Groups j  =  1 , . . . ,  J .  This works for a single level of grouping (for example, 

students within schools, or persons within states).
• We occasionally use k =  1 , . . . , f f  for a second level of grouping (for exam­

ple, students within schools within districts; or, for a non-nested example test 
responses that can be characterized by person or by item). In any particular 
example, we have to distinguish this k from the number of predictors in X . For 
more complicated examples we develop idiosyncratic notation as appropriate.

• Index variables j[i\ code group membership. For example, if j [35] =  4, then the 
35£/l unit in the data (i =  35) belongs to group 4.

• Coefficients are sometimes written as a vector /3, sometimes as a , /3 (as in F gure
11.1 on page 238), with group-level regression coefficients typically called 7 .

• We make our R  and Bugs code more readable by typing a , /3,7 as a , b , g .

• We write the varying-intercept model with one additional predictor as ji —
a j[i\ +(3%i + ei or yi ~  N (aJ-[i] +/3x*, Gy)- Similarly, the varying-intercept, varying- 
slope model is +  /%]£» +  e* or yt ~  N(0 ,^  +  /% ]£*,cr%).

• With multiple predictors, we write yi =  X iB  -he*, or yi N pQ B, Gy). B  is 
a matrix of coefficients that can be modeled using a general varying-intercept. 
varying-slope model (as discussed in the next chapter).

• Standard deviation is a y for data-level errors and 073, and so forth, for group- 
level errors.

• Group-level predictors are represented by a matrix U with J  rows, for example, 
in the group-level model, ay ~  N(/7 7̂ , a %). When there is a single group-level 
predictor, we label it as lowercase u.
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12.2 Partial pooling with no predictors

As noted in Section 1.3, multilevel regression can be thought of as a method for 
compromising between the two extremes of excluding a categorical predictor rom 
a model (complete pooling), or estimating separate models within each level o:‘ the 
categorical predictor (no pooling).

Complete-pooling and no-pooling estimates o f county radon levels

We illustrate with the home radon example, which we introduced in Section 1.2 and 
shall use throughout this chapter. Consider the goal of estimating the distribution 
of radon levels of the houses within each of 85 counties in Minnesota.1 This seems

1 R ad on  levels are alw ays positive, and it is reasonable to  suppose th a t effects will be m ultiplica­
tive; hence it is ap p ro p riate  to  m odel th e d a ta  on th e logarithm ic scale (see Section  4 .4 ) For  
som e purposes, though, such as estim atin g  to ta l can cer risk, it m akes sense to  es tim ate  averages  
on th e  original, unlogged scale; we can  ob tain  these inferences using sim ulation , as discussed  
a t th e end of Section 12 .8 .
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Figure 12.1 Estimates ±  standard errors for the average log radon levels in Minnesota 
counties plotted versus the (jittered) number of observations in the county: (a) no-pooling 
analysis, (b) multilevel (partial pooling) analysis, in both cases with no house-level or 
county-level predictors. The counties with fewer measurements have more variable esti­
mates and larger higher standard errors. The horizontal line in each plot represents an 
estimate of the average radon level across all counties. The left plot illustrates a problem 
with the no-pooling analysis: it systematically causes us to think that certain counties are 
more extreme, just because they have smaller sample sizes.

simple enough. One estimate would be the average that completely pools data 
across all counties. This ignores variation among counties in radon levels, however, 
so perhaps a better option would be simply to use the average log radon level in 
each county. Figure 12.1a plots these averages against the number of observations 
in each county.

Whereas complete pooling ignores variation between counties, the no-pooling 
analysis overstates it. To put it another way, the no-pooling analysis overfits the 
data within each county. To see this, consider Lac Qui Parle County (circled in the 
plot), which has the highest average radon level of all 85 counties in the data. This 
average, however, is estimated using only two data points. Lac Qui Parle may very 
well be a high-radon county, but do we really believe it is that high? Maybe, but 
probably not: given the variability in the data we would not have much trust in an 
estimate based on only two measurements.

To put it another way, looking at all the counties together: the estimates from 
the no-pooling model overstate the variation among counties and tend to make the 
individual counties look more different than they actually are.

Partial-pooling estimates from a multilevel model

The multilevel estimates of these averages, displayed in Figure 12.1b, represent a 
compromise between these two extremes. The goal of estimation is the average log 
radon level a j  among all the houses in county j , for which all we have available 
are a random sample of size Uj. For this simple scenario with no predictors, the 
multilevel estimate for a given county j  can be approximated as a weighted average 
of the mean of the observations in the county (the unpooled estimate, y j) and the 
mean over all counties (the completely pooled estimate, yan):

m̂ultilevel ¡¿T 2/all
ni  +  J Trr* ' rr*

(12.1)
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where Uj is the number of measured houses in county j ,  a y is the within-county 
variance in log radon measurements, and a\ is the variance among the a\erage 
log radon levels of the different counties. We could also allow the within-county 
variance to vary by county (in which case a y would be replaced by a yj  in the 
preceding formula) but for simplicity we assume it is constant.

The weighted average (12.1) reflects the relative amount of information available 
about the individual county, on one hand, and the average of all the counties, on 
the other:
• Averages from counties with smaller sample sizes carry less information, and the 

weighting pulls the multilevel estimates closer to the overall state average. In the 
limit, if rij =  0, the multilevel estimate is simply the overall average, ÿaii-

• Averages from counties with larger sample sizes carry more information, and the 
corresponding multilevel estimates are close to the county averages. In the limit 
as rij —> oo, the multilevel estimate is simply the county average, ÿj.

• In intermediate cases, the multilevel estimate lies between the two extremes.
To actually apply (12.1), we need estimates of the variation within and between 
counties. In practice, we estimate these variance parameters together with the ay’s, 
either with an approximate program such as ImerO (see Section 12.4) or using 
fully Bayesian inference, as implemented in Bugs and described in Part 2B of this 
book. For now, we present inferences (as in Figure 12.1) without dwelling o:i the 
details of estimation.

12.3 Partial pooling with predictors

The same principle of finding a compromise between the extremes of complete 
pooling and no pooling applies for more general models. This section considers 
partial pooling for a model with unit-level predictors. In this scenario, no pooling 
might refer to fitting a separate regression model within each group. However, a less 
extreme and more common option that we also sometimes refer to as “no pooling” 
is a model that includes group indicators and estimates the model classically.2

As we move on to more complicated models, we present estimates graphically 
but do not continue with formulas of the form (12.1). However, the general prin­
ciple remains that multilevel models compromise between pooled and unpooled 
estimates, with the relative weights determined by the sample size in the group and 
the variation within and between groups.

Complete-pooling and no-pooling analyses fo r  the radon data, with predictors

Continuing with the radon data, Figure 12.2 shows the logarithm of the Lome 
radon measurement versus floor of measurement3 for houses sampled from eight 
of 85 counties in Minnesota. (We fit our model to the data from all 85 counties, 
including a total of 919 measurements, but to save space we display the data and 
estimates for a selection of eight counties, chosen to capture a range of the sample 
sizes in the survey.)

In each graph of Figure 12.2, the dashed line shows the linear regression of log

2 T his version of “no pooling” does not pool th e  estim ates for th e  in tercep ts— th e p aram eters  
we focus on in th e cu rren t discussion— b u t it does com pletely pool estim ates for any slope 
coefficients (th ey  are  forced to  have th e  sam e value acro ss all groups) and also assum es th e  
residual v arian ce is th e  sam e w ithin each group.

3 M easurem ents were tak en in th e lowest living are a  of each house, w ith basem ent coded as 0 
and first floor coded as 1.
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Figure 12.2 Complete-pooling (dashed lines, y = a  + fix) and no-pooling (solid lines, 
y = Oij fix) regressions fit to radon data from 85 counties in Minnesota, and displayed 
for eight of the counties. The estimated slopes (3 differ slightly for the two models, but here 
our focus is on the intercepts.

radon, given the floor of measurement, using a model that pools all counties together 
(so the same line appears in all eight plots), and the solid line shows the no-pooling 
regressions, obtained by including county indicators in the regression (with the 
constant term removed to avoid collinearity; we also could have kept the constant 
term and included indicators for all but one of the counties). We can write the 
complete-pooling regression as yi =  a  +  fixi +  e* and the no-pooling regression as 
Vi = ®j[i] +  fi%i +  ti, where j[i\ is the county corresponding to house i. The solid 
lines then plot y =  a  +  fix  from the complete-pooling model, and the dashed lines 
show y =  dij +  fix , for j  =  1 , . . . ,  8, from the no-pooling model.

Here is the complete-pooling regression for the radon data:

lm(formula = y ~ x)
coef.est coef.se 

(Intercept) 1.33 0.03
x -0.61 0.07
n = 919, k = 2 
residual sd = 0.82

To fit the no-pooling model in R, we include the county index (a variable named 
county that takes on values between 1 and 85) as a factor in the regression—thus, 
predictors for the 85 different counties. We add “—1” to the regression formula to 
remove the constant term, so that all 85 counties are included. Otherwise, R  would 
use county 1 as a baseline.

lm(formula = y x + factor(county) - 1) 
coef.est coef.sd

X -0.72 0.07
factor(county)1 0.84 0.38
factor(county)2 0.87 0.10

factor(county)85 1.19 0.53
n = 919, k = 86 
residual sd = 0.76

The estimated slopes fi differ slightly for the two regressions. The no-pooling 
model includes county indicators, which can change the estimated coefficient for 
x , if the proportion of houses with basements varies among counties. This is just

R  output

R  output



256 MULTILEVEL LINEAR MODELS: THE BASICS

Figure 12.3 (a) Estimates =b standard errors for the county intercepts otj in the model 
yi = ctj[i\ +0Xi +  erron, for the no-pooling analysis of the radon data, plotted versus num­
ber of observations from the county. The counties with fewer measurements have more 
variable estimates with higher standard errors. This graph illustrates a problem with clas­
sical regression: it systematically causes us to think that certain counties are more extreme, 
just because they have smaller sample sizes.
(b) Multilevel (partial pooling) estimates ±  standard errors for the county intercepts aj 
for the radon data, plotted versus number of observations from the county. The horizontal 
line shows the complete pooling estimate. Comparing to the left plot (no pooling), which is 
on the same scale, we see that the multilevel estimate is typically closer to the corr plete- 
pooling estimate for counties with few observations, and closer to the no-pooling estimates 
for counties with many observations.
These plots differ only slightly from the no-pooling and multilevel estimates witho it the 
house-level predictor, as displayed in Figure 12.1.

a special case of the rule that adding new predictors in a regression can change 
the estimated coefficient of x, if these new predictors are correlated with x. In 
the particular example shown in Figure 12.2, the complete-pooling and no-pooling 
estimates of /3 differ only slightly; in the graphs, the difference can be seen most 
clearly in Stearns and Ramsey counties.

Problems with the no-pooling and complete-pooling analyses

Both the analyses shown in Figure 12.2 have problems. The complete-pooling anal­
ysis ignores any variation in average radon levels between counties. This is unde­
sirable, particularly since the goal of our analysis was to identify counties with 
high-radon homes. We do not want to pool away the main subject of our study!

The no-pooling analysis has  problems too, however, which we can again see in 
Lac Qui Parle County. Even after controlling for the floors of measurement, this 
county has the highest fitted line (that is, the highest estimate dj ) ,  but again we 
do not have much trust in an estimate based on only two observations.

More generally, we would expect the counties with the least data to get more 
extreme estimates a.j in the no-pooling analyses. Figure 12.3a illustrates with the 
estimates ±  standard errors for the county intercepts a j , plotted versus the sample 
size in each county j .

Multilevel analysis

The simplest multilevel model for the radon data with the floor predictor can be 
written as

Vi ~ N(aj[i] + (3x i ,( jy ) , for i =  1, . . .  ,n, (-2-2)
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Figure 12.4 Multilevel (partial pooling) regression lines y = a j + fix fit to radon data 
from Minnesota, displayed for eight counties. Light-colored dashed and solid lines show 
the complete-pooling and no-pooling estimates, respectively, from Figure 12.3a.

which looks like the no-pooling model but with one key difference. In the no-pooling 
model, the a fis  are set to the classical least squares estimates, which correspond to 
the fitted intercepts in a model run separately in each county (with the constraint 
that the slope coefficient equals fi in all models). Model (12.2) also looks a little 
like the complete-pooling model except that, with complete pooling, the a/ s are 
given a “hard constraint”—they are all fixed at a common a.

In the multilevel model, a “soft constraint” is applied to the afis: they are as­
signed a probability distribution,

(fiocCrl), for j  =  1 , . . . ,  J ,  (12.3)

with their mean pba and standard deviation a a estimated from the data. The distri­
bution (12.3) has the effect of pulling the estimates of otj toward the mean level ¿¿a , 
but not all the way— thus, in each county, a partial-pooling compromise between the 
two estimates shown in Figure 12.2. In the limit of a a —> oo, the soft constraints 
do nothing, and there is no pooling; as cra —► 0, they pull the estimates all the way 
to zero, yielding the complete-pooling estimate.

Figure 12.4 shows, for the radon example, the estimated line from the multi­
level model (12.2), which in each county lies between the complete-pooling and 
no-pooling regression lines. There is strong pooling (solid line closer to complete- 
pooling line) in counties with small sample sizes, and only weak pooling (solid line 
closer to no-pooling line) in counties containing many measurements.

Going back to Figure 12.3, the right panel shows the estimates and standard 
errors for the county intercepts otj from the multilevel model, plotted versus county 
sample size. Comparing to the left panel, we see more pooling for the counties with 
fewer observations. We also see a trend that counties with larger sample sizes have 
lower radon levels, indicating that “county sample size” is correlated with some 
relevant county-level predictor.

Average regression line and individual- and group-level variances

Multilevel models typically have so many parameters that it is not feasible to closely 
examine all their numerical estimates. Instead we plot the estimated group-level 
models (as in Figure 12.4) and varying parameters (as in Figure 12.3b) to look 
for patterns and facilitate comparisons across counties. It can be helpful, however,
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to look at numerical summaries for the hyperparameters—those model parameters 
without group-level subscripts.

For example, in the radon model, the hyperparameters are estimated as ua =  
1.46, ¡3 =  —0.69, <7y =  0.76, and a a =  0.33. (We show the estimates in Section 12.4.) 
That is, the estimated average regression line for all the counties is y — 1.46 — 0.69.r, 
with error standard deviations of 0.76 at the individual level and 0.33 at the county 
level. For this dataset, variation within counties (after controlling for the floor of 
measurement) is comparable to the average difference between measurements in 
houses with and without basements.

One way to interpret the variation between counties, cra , is to consider the 
variance ratio, <j 2/<t2, which in this example is estimated at 0.332/0.762 =  0.19, 
or about one-fifth. Thus, the standard deviation of average radon levels between 
counties is the same as the standard deviation of the average of 5 measurements 
within a county (that is, 0.76/\/5 =  0.33). The relative values of individual- and 
group-level variances are also sometimes expressed using the intraclass correlation, 
cr2/(cr2 +  cr2), which ranges from 0 if the grouping conveys no information to 1 if 
all members of a group are identical.

In our example, the group-level model tells us that the county intercepts, , have 
an estimated mean of 1.46 and standard deviation of 0.33. (What is relevant to our 
discussion here is the standard deviation, not the mean.) The amount of information 
in this distribution is the same as that in 5 measurements within a county. To put it 
another way, for a county with a sample size less than 5, there is more information 
in the group-level model than in the county’s data; for a county with more than 5 
observations, the within-county measurements are more informative (in the sense 
of providing a lower-variance estimate of the county’s average radon level). As a 
result, the multilevel regression line in a county is closer to the complete-pooling 
estimate when sample size is less than 5, and closer to the no-pooling estimate when 
sample size exceeds 5. We can see this in Figure 12.4: as sample size increases, the 
multilevel estimates move closer and closer to the no-pooling lines.

Partial pooling (shrinkage) o f group coefficients ctj

Multilevel modeling partially pools the group-level parameters ctj toward :heir 
mean level, p a . There is more pooling when the group-level standard deviation 
cra is small, and more smoothing for groups with fewer observations. Geneializ- 
ing (12.1), the multilevel-modeling estimate of ctj can be expressed as a weighted 
average of the no-pooling estimate for its group (ÿj — fixj) and the mean, fiQ:

When actually fitting multilevel models, we do not actually use this formula; ra ther, 
we fit models using ImerO or Bugs, which automatically perform the calculations, 
using formulas such as (12.4) internally. Chapter 19 provides more detail on the 
algorithms used to fit these models.

Classical regression as a special case

Classical regression models can be viewed as special cases of multilevel models. 
The limit of a a —► 0 yields the complete-pooling model, and cra —> oo reduces to 
the no-pooling model. Given multilevel data, we can estimate Therefore we

estimate of a j (.2.4)
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see no reason (except for convenience) to accept estimates that arbitrarily set this 
parameter to one of these two extreme values.

12.4 Quickly fitting multilevel models in R

We fit most of the multilevel models in this part of the book using the lm er() 
function, which fits linear and generalized linear models with varying coefficients.4 
Part 2B of the book considers computation in more detail, including a discussion 
of why it can be helpful to make the extra effort and program models using Bugs 
(typically using a simpler lm er() fit as a starting point). The lm er() function 
is currently part of the R  package M atrix; see Appendix C for details. Here we 
introduce ImerO in the context of simple varying-intercept models.

The Imer function

Varying-intercept model with no predictors. The varying intercept model with no 
predictors (discussed in Section 12.2) can be fit and displayed using ImerO as 
follows:

MO <- lmer (y ~ 1 + (1 | county)) 
display (MO)

This model simply includes a constant term (the predictor “1”) and allows it to 
vary by county. We next move to a more interesting model including the floor of 
measurement as an individual-level predictor.

Varying-intercept model with an individual-level predictor. We shall introduce mul­
tilevel fitting with model (12.2)-(12.3), the varying-intercept regression with a single 
predictor. We start with the call to Im erO :

Ml <- lmer (y ~ x + (1 I county))
This expression starts with the no-pooling model, “y ~ x,” and then adds “(1 I 
county),” which allows the intercept (the coefficient of the predictor “1,” which is 
the column of ones—the constant term in the regression) to vary by county.

We can then display a quick summary of the fit:

display (Ml)
which yields

lmer(formula = y ~ x + (1 ! county)) 
coef.est coef.se

(Intercept) 1.46 0.05
x -0.69 0.07
Error terms:
Groups Name Std.Dev
county (Intercept) 0.33
Residual 0.76
# of obs: 919, groups: county, 85 
deviance = 2163.7

4 T h e nam e lm er stan d s for “linear m ixed effects in R ,” b u t th e  function actu ally  works for 
generalized linear m odels as well. T h e te rm  “m ixed effects” refers to  random  effects (coefficients 
th a t vary  by group) and fixed effects (coefficients th a t  do not v ary ). W e avoid th e  term s “fixed” 
and “ran d o m ” (see page 2 4 5 ) and instead refer to  coefficients as “m odeled” (th a t is, grouped) 
or “unm odeled .”

R  code

R  code

R  code

R  output
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The top part of this display shows the inference about the intercept and slope 
for the model, averaging over the counties. The bottom part gives the estimated 
variation: a a =  0.33 and a y =  0.76. We also see that the model was fit to 919 
houses within 85 counties. We shall ignore the deviance for now.

Estimated regression coefficients

To see the estimated model within each county. We type

R  code coef (Ml)
which yields

R  output $county
(Intercept) x

1 1.19 -0.69
2 0.93 -0.69
3 1.48 -0.69

85 1.39 -0.69
Thus, the estimated regression line is y =  1.19 — 0.69a; in county 1, y =  0 .93+  3.69a; 
in county 2, and so forth. The slopes are all identical because they were specified 
thus in the model. (The specification ( 1 1 county) tells the model to allow only the 
intercept to vary. As we shall discuss in the next chapter, we can allow the slope to 
vary by specifying (1+x I county) in the regression model.)

Fixed and random effects. Alternatively, we can separately look at the estimated 
model averaging over the counties— the “fixed effects”— and the county-level errors— 
the “random effects.” Typing

R  cod e f i x e f  (Ml)

yields

R  output (Intercept) x
1.46 -0.69

The estimated regression line in an average county is thus y =  1.46 — 0.69a:. We 
can then look at the county-level errors:

R  cod e ranef (Ml) 

w hich yields

R  output (Intercept)
1 -0.27
2 -0.53
3 0.02

85 -0.08
These tell us how much the intercept is shifted up or down in particular counties. 
Thus, for example, in county 1, the estimated intercept is 0.27 lower than average, 
so that the regression line is (1.46 — 0.27) — 0.69a; =  1.19 — 0.69a;, which is what 
we saw earlier from the call to coef ( ) . For some applications, it is best to see the 
estimated model within each group; for others, it is helpful to see the estimated 
average model and group-level errors.
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Uncertainties in the estimated coefficients

We wrote little functions s e . f  ix e f  () and s e . ran ef () for quickly pulling out these 
standard errors from the model fitted by lm er(). In this example,

se.fixef (Ml)
yields

(Intercept) x
0.05 0.07

and

se.ranef (Ml) 
yields,

$county
(Intercept)

1 0.25
2 0.10
3 0.26

85 0.28
As discussed in Section 12.3, the standard errors differ according to the sample size 
within each county; for example, counties 1, 2, and 85 have 4, 52, and 2 houses, 
respectively, in the sample. For the within-county regressions, standard errors are 
only given for the intercepts, since this model has a common slope for all counties.

Summarizing and displaying the fitted model

We can access the components of the estimates and standard errors using list no­
tation in R. For example, to get a 95% confidence interval for the slope (which, in 
this model, does not vary by county):

fixef(Ml)["x"] + c(-2,2)*se.fixef(Ml) ["x"]
or, equivalently, since the slope is the second coefficient in the regression,

fixef(Ml)[2] + c(-2,2)*se.fixef(Ml)[2]
The term “fixed effects” is used for the regression coefficients that do not vary by 
group (such as the coefficient for x in this example) or for group-level coefficients 
or group averages (such as the average intercept, in (12.3)).
Identifying the batches o f coefficients. In pulling out elements of the coefficients 
from coef 0  or ran ef ( ) ,  we must first identify the grouping (county, in this case). 
The need for this labeling will become clear in the next chapter in the context of 
non-nested models, where there are different levels of grouping and thus different 
structures of varying coefficients.

For example, here is a 95% confidence interval for the intercept in county 26:

coef(Ml)$county[26,1] + c(-2,2)*se.ranef(Ml)$county[26]
and here is a 95% confidence interval for the error in the intercept in that county 
(that is, the deviation from the average):

as.matrix(ranef(Ml)$county)[26] + c(-2,2)*se.ranef(Ml)$county[26]
For a more elaborate example, we make Figure 12.4 using the following commands:

R  code 

R  output

R  code 

R  output

R  code 

R  code

R  code

R  code
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R  code # 1st column is the intercept
# 2nd element is the slope
# jittered data for plotting
# make a 2x4 grid of plots

a. hat.Ml <- coef(Ml)$county[,1]
b. hat.Ml <- coef(Ml)$county[,2]
x.jitter <- x + runif(n,-.05,.05) 
par (mfrow=c(2,4)) 
for (j in display8){
plot (x.j itter[county==j], y [county==j], xlim=c(-.05,1.05),
ylim=y.range, xlab="floor", ylab="log radon level", main=uniq.name[j]) 

## [uniq.name is a vector of county names that was created earlier]
curve (coef(lm.pooled)[1] + coef(lm.pooled)[2]*x, lty=2, col="grayl0", 
add=TRUE)

curve (coef(lm.unpooled)[j+1] + coef(lm.unpooled)[1]*x, col="grayl0", 
add=TRUE)

curve (a.hat.Ml[j] + b.hat.Ml[j]*x, lwd=l, col="black", add=TRUE)
}

Here, lm. pooled and lm. unpooled are the classical regressions that we have already 
fit.

More complicated models

The ImerO function can also handle many of the multilevel regressions discussed 
in this part of the book, including group-level predictors, varying intercepts and 
slopes, nested and non-nested structures, and multilevel generalized linear models. 
Approximate routines such as ImerO tend to work well when the sample size and 
number of groups is moderate to large, as in the radon models. When the number of 
groups is small, or the model becomes more complicated, it can be useful to switch 
to Bayesian inference, using the Bugs program, to better account for uncertainty 
in model fitting. We return to this point in Section 16.1.

12.5 Five ways to write the same model

We begin our treatment of multilevel models with the simplest structures—rested  
models, in which we have observations i =  1 , . . . ,  n clustered in groups j  =  1,. ., J ,  
and we wish to model variation among groups. Often, predictors are available at 
the individual and group levels. We shall use as a running example the home radon 
analysis described above, using as predictors the house-level Xi and a measure of 
the logarithm of soil uranium as a county-level predictor, Uj. For some versions of 
the model, we include these both as individual-level predictors and label them as 
Xu and Xi2-

There are several different ways of writing a multilevel model. Rather than in­
troducing a restrictive uniform notation, we describe these different formulations 
and explain how they are connected. It is useful to be able to express a moo el in 
different ways, partly so that we can recognize the similarities between models that 
only appear to be different, and partly for computational reasons.

Allowing regression coefficients to vary across groups

Perhaps the simplest way to express a multilevel model generally is by starting with
the classical regression model fit to all the data, yi =  /30 +  PiXn  +  /?2X \2 H-------be*,
and then generalizing to allow the coefficients (3 to vary across groups; thus,

Vi — Po j\i\ + Pi j[i\Xil + P\2 j[i]Xi2 H--- b €i.
The “multilevel” part of the model involves assigning a multivariate distribution to 
the vector of /3’s within each group, as we discuss in Section 13.1.
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For now we will focus on varying-intercept models, in which the only coefficient 
that varies across groups is the constant term /?o (which, to minimize subscripting, 
we label a). For the radon data that include the floor and a county-level uranium 
predictor, the model then becomes

Hi — <Xj[i] +  Pi Xu  +  P2X12 +  €i

where Xu  is the i th element of the vector X ^  representing the first-floor indicators 
and Xi2 is the zth element of the vector X(2) representing the uranium measurement 
in the county containing house i. We can also write this in matrix notation as

Vi =  OLj[¿] +  X i P  +  a

with the understanding that X  includes the first-floor indicator and the county 
uranium measurement but not the constant term. This is the way that models are 
built using ImerO,  including all predictors at the individual level, as we discuss in 
Section 12.6.

The second level of the model is simply

a j  ~  N(/za ,<T )̂. (12.5)

Group-level errors. The model (12.5) can also be written as

a j  =  fia +  r)j, with Tjj ~  N(0 ,er£). (12.6)

The group-level errors r\j can be helpful in understanding the model; however, we 
often use the more compact notation (12.5) to reduce the profusion of notation. 
(We have also toyed with notation such as a j  =  fia +  e? in which e is consistently 
used for regression errors—but the superscripts seem too confusing. As illustrated 
in Part 2B of this book, we sometimes use such notation when programming models 
in Bugs.)

Combining separate local regressions

An alternative way to write the multilevel model is as a linking of local regressions 
in each group. Within each group j ,  a regression is performed on the local predictors 
(in this case, simply the first-floor indicator, a^), with a constant term a  that is 
indexed by group:

within county j : yi N (aj +  Pxi,(jy), for i =  1 , . .  . ,rij.  (12.7)

The county uranium measurement has not yet entered the model since we are imag­
ining separate regressions fit to each county— there would be no way to estimate the 
coefficient for a county-level predictor from any of these within-county regressions.

Instead, the county-level uranium level, zzj, is included as a predictor in the 
second level of the model:

a j  ~  N(70 + 'n u j ,a l ) .  (1 2 .8)

We can also write the distribution in (1 2 .8) as N({7j 7 , a \), where U has two columns: 
a constant term, [/(0), and the county-level uranium measurement, U(i). The errors 
in this model (with mean 0 and standard deviation cra ) represent variation among 
counties that is not explained by the local and county-level predictors.

The multilevel model combines the J  local regression models (12.7) in two ways: 
first, the local regression coefficients P are the same in all J  models (an assumption 
we will relax in Section 13.1). Second, the different intercepts a j  are connected 
through the group-level model (1 2 .8), with consequences to the coefficient estimates 
that we discuss in Section 12.6.
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Group-level errors. We can write (12.8) as

a j  =  7o +  7 iuj + Vi, with Vj ~  N(°) o'a)) (12.9)

explicitly showing the errors in the county-level regression.

Modeling the coefficients o f a large regression model

The identical model can be written as a single regression, in which the local and 
group-level predictors are combined into a single matrix X :

^ - N № / 3 ,^ ) ,  (1 2 .1 0 )

where, for our example, X  includes vectors corresponding to:

• A constant term, X^y,

• The floor where the measurement was taken, X (i);

• The county-level uranium measure, X^2y

• J  (not J — 1 ) county indicators, X( 3) , . . . ,X (j+ 2)-
At the upper level of the model, the J  county indicators (which in this case are 
/?3 , . . . ,  (3j+2) follow a normal distribution:

(3j ~  N(0,<j ^), for j  =  3 , . . . ,  J  +  2 . (1 2 .1 1 )

In this case, we have centered the ffj distribution at 0 rather than at an estimated 
pp because any such fip would be statistically indistinguishable from the constant 
term in the regression. We return to this point shortly.

The parameters in the model (1 2 .10 )—(1 2 .1 1 ) can be identified exactly with I hose 
in the separate local regressions above:

• The local predictor x in model (12.7) is the same a s X ^ ) (the floor) here.

• The local errors e* are the same in the two models.

• The matrix of group-level predictors U in (1 2 .8) is just X (0) here (the constant 
term) joined with X(2) (the uranium measure).

• The group-level errors 771, . . . ,  r j j in (12.9) are identical to /?3, . . . ,  3j +2 here.

• The standard-deviation parameters a y and a a keep the same meanings ir the 
two models.

Moving the constant term around. The multilevel model can be written ir yet 
another equivalent way by moving the constant term:

Vi =  N(Xi/3,<jy), for i =

0j ~  N(/iQ,£r£), for j  =  3 , . . . ,  J  +  2. (12.12)

In this version, we have removed the constant term from X  (so that it now has only 
J  +  2 columns) and replaced it by the equivalent term fia in the group-level model. 
The coefficients /33, . . . ,  /3j+ 2 for the group indicators are now centered around /xa 
rather than 0 , and are equivalent to aq, . . . ,  a  j  as defined earlier, for example, in 
model (12.9).

Regression with multiple error terms

Another option is to re-express model (12.10), treating the group-indicator c<:-effi­
cients as error terms rather than regression coefficients, in what is often call*3d a



GROUP-LEVEL PRED ICTO R S 265

“mixed effects” model popular in the social sciences:

Vi ~  N{XiP + rjj^ crl), for l , . . . , n

Vj ~  N(0 , ^ ) ,  (12.13)

where j[i] represents the county that contains house i , and X  now contains only 
three columns:

• A constant term, X (0);

• The floor, X (i);

• The county-level uranium measure, X (2).

This is the same as model (12.10)—(12.11), simply renaming some of the /?/s as 
77j ’s. All our tools for multilevel modeling will automatically work for models with 
multiple error terms.

Large regression with correlated errors

Finally, we can express a multilevel model as a classical regression with correlated 
errors:

yi = Xi(3 +  e f ,  eal1 ~  N(0, £ ) , (12.14)

where X  is now the matrix with three predictors (the constant term, first-floor 
indicator, and county-level uranium measure) as in (12.13), but now the errors eal1 
have an n x n covariance matrix E. The error ef11 in (12.14) is equivalent to the 
sum of the two errors, +  e*, in (12.13). The term 77̂ ] , which is the same for all 
units i in group j ,  induces correlation in eal1.

In multilevel models, E is parameterized in some way, and these parameters are 
estimated from the data. For the nested multilevel model we have been considering 
here, the variances and covariances of the n elements of eal1 can be derived in terms 
of the parameters o y and a a :

For any unit i: E^ =  var(efn) =  a  y +  <?&

For any units z, k within the same group j : E ^  =  cov(ea11, ê 11) =  cr̂
For any units z, k in different groups: E ^  =  cov(efu, e f 1) =  0.

It can also be helpful to express E in terms of standard errors and correlations: 

sd(e;) =

corr(e^, €fc) =

We generally prefer modeling the multilevel effects explicitly rather than burying 
them as correlations, but once again it is useful to see how the same model can be 
written in different ways.

y f c i  =  y l° l  +  ° l

=  f  ^ 2  if j[i\ =  j[k] 
y/'Su'Ekk \ 0 a  j[i] j[k\.

12.6 Group-level predictors

Adding a group-level predictor to improve inference fo r  group coefficients otj

We continue with the radon example from Sections 12.2-12.3 to illustrate how a 
multilevel model handles predictors at the group as well as the individual levels.
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Figure 12.5 Multilevel (partial pooling) regression lines y =  o lj +  fix fit to radon data, 
displayed for eight counties, including uranium as a county-level predictor. Light-colored 
lines show the multilevel estimates, without uranium as a predictor, from Figure 12 4-

Figure 12.6 Estimated county coefficients ctj ( ± 1 standard error) plotted versus county- 
level uranium measurement Uj, along with the estimated multilevel regression line aj =  
7o + 7 iU j . The county coefficients roughly follow the line but not exactly; the deviation of 
the coefficients from the line is captured in aa , the standard deviation of the errors m the 
county-level regression.

We use the formulation

yi ~  N(<U[i] +  0xi, t f ) ,  for i =  1, . . . ,  n
a ,  ~  N(7 o +  7 i Uj , a l ) ,  for j  =  1, . . . ,  J ,  (12.15)

where Xi is the house-level first-floor indicator and Uj is the county-level uranium 
measure.

R  code u .fu ll <- u[county]
M2 <- lmer (y ~ x + u .fu ll + (1 I county)) 
display (M2)

This model includes floor, uranium, and intercepts that vary by county. The lmer () 
function only accepts predictors at the individual level, so we have converted uj to 
?4 u11 =  uj[i] (with the variable county playing the role of the indexing j[i]), to pull 
out the uranium level of the county where house i is located.

The display of the lm er() fit shows coefficients and standard errors, along with 
estimated residual variation at the county and individual ( “residual” ) level:
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lmer(formula = y ~ x + u.full + (1 I county)) 
coef.est coef.se

(Intercept) 1.47 0.04
x -0.67 0.07
u.full 0.72 0.09
Error terms:
Groups Name Std.Dev.
county (Intercept) 0.16 
Residual 0.76
# of obs: 919, groups: county, 85 
deviance = 2122.9

As in our earlier example on page 261, we use coef () to pull out the estimated 
coefficients,

coef (M2) 
yielding

$county
(Intercept) x u,.full

1 1.45 -0.67 0.72
2 1.48 -0.67 0.72

85 1.42 -0.67 0.72
Only the intercept varies, so the coefficients for x and u . f u l l  are the same for all 85 
counties. (Actually, u . f u l l  is constant within counties so it cannot have a varying 
coefficient here.) On page 280 we shall see a similar display for a model in which 
the coefficient for x varies by county.

As before, we can also examine the estimated model averaging over the counties:

fixef (M2) 

yielding

(Intercept) x u.full
1.47 -0.67 0.72

and the county-level errors:

ranef (M2) 
yielding

(Intercept)
1 -0.02
2 0.01

85 -0.04
The results of fixef ()  and ranef () add up to the coefficients in coef(): for 
county 1, 1.47 -  0.02 =  1.45, for county 2, 1.47 +  0.01 =  1.48, . . . ,  and for county 
85, 1.47 — 0.04 =  1.42 (up to rounding error).

R  output

R  code

R  output

R  code

R  output

R  code

R  output



Interpreting the coefficients within counties

We can add the unmodeled coefficients (the “fixed effects”) to the county-level errors 
to get an intercept and slope for each county. We start with the model that averages 
over all counties, yi =  1.47 — 0.67x* +  0.721^] (as obtained from d isp lay  (M2) or 
f i x e f (M2).

Now consider a particular county, for example county 85. We can determine its 
fitted regression line in two ways from the lm er() output, in each case using the 
log uranium level in county 85, =  0.36.

First, using the the last line of the display of coef (M2 ) , the fitted model for county 
85 is yi =  1.42 -  0.67x* +  0.72^85 =  (1.42 +  0.72 • 0.36) -  0.67®» =  1.68 -  0.67x*, 
that is, 1.68  for a house with a basement and 1.0 1  for a house with no basement. 
Exponentiating gives estimated geometric mean predictions of 5.4 pCi/L and 2.7 
pCi/L for houses in county 85 with and without basements.

Alternatively, we can construct the fitted line for county 85 by starting with the 
results from f i x e f  (M2)—that is, yi =  1.47 — 0.67x* +  0 .7 2 t^ ], setting Uj^ =  ug 5 =
0.36— and adding the group-level error from ran ef (M2), which for county 85 is 
—0.04. The resulting model is yi =  1.47 —0.67x^4-0.72 *0 .36— 0.04 =  1.68 —0.67x*, 
the same as in the other calculation (up to rounding error in the last digit of the 
intercept).

Figure 12.5 shows the fitted line for each of a selection of counties, and Figure
12 .6  shows the county-level regression, plotting the estimated coefficients a j  versus 
the county-level predictor Uj. These two figures represent the two levels of the 
multilevel model.

The group-level predictor has increased the precision of our estimates of the 
county intercepts a j : the ±1 standard-error bounds are narrower in Figure 12.6 
than in Figure 12.3b, which showed ô -’s estimated without the uranium precictor 
(note the different scales on the y-axes of the two plots and the different county 
variables plotted on the x-axes).

The estimated individual- and county-level standard deviations in this model are 
Gy =  0.76 and a a =  0.16. In comparison, these residual standard deviations were
0.76 and 0.33 without the uranium predictor. This predictor has left the within- 
county variation unchanged—which makes sense, since it is a county-level precictor 
which has no hope of explaining variation within any county— but has drastically 
reduced the unexplained variation between counties. In fact, the variance rauio is 
now only cr2 /cr2 =  0.162/0.762 =  0.044, so that the county-level model is as good 
as 1/0.044 =  23 observations within any county. The multilevel estimates under 
this new model will be close to the complete-pooling estimates (with county-level 
uranium included as a predictor) for many of the smaller counties in the dataset 
because a county would have to have more than 23 observations to be pulled c loser 
to the no-pooling estimate than the complete-pooling estimate.
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Interpreting the coefficient o f the group-level predictor

The line in Figure 12.6 shows the prediction of average log radon in a ccunty 
(for homes with basements—that is, Xi =  0—since these are the intercepts a j) .  
as a function of the log uranium level in the county. This estimated group-level 
regression line has an estimated slope of about 0.7. Coefficients between 0 and 1 
are typical in a log-log regression: in this case, each increase of 1 % in uranium level 
corresponds to a 0.7% predicted increase in radon.

It makes sense that counties higher in uranium have higher radon levels, a id  it 
also makes sense that the slope is less than 1 . Radon is affected by factors other
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than soil uranium, and the “uranium” variable in the dataset is itself an imprecise 
measure of actual soil uranium in the county, and so we would expect a 1 % increase 
in the uranium variable to match to something less than a 1 % increase in radon. 
Compared to classical regression, the estimation of this coefficient is trickier (since 
the a j ’s— the “data” for the county-level regression— are not themselves observed) 
but the principles of interpretation do not change.

A multilevel model can include county indicators along with a county-level

Users of multilevel models are often confused by the idea of including county in­
dicators along with a county-level predictor. Is this possible? With 85 counties in 
the dataset, how can a regression fit 85 coefficients for counties, plus a coefficient 
for county-level uranium? This would seem to induce perfect collinearity into the 
regression or, to put it more bluntly, to attempt to learn more than the data can 
tell us. Is it really possible to estimate 86 coefficients from 85 data points?

The short answer is that we really have more than 85 data points. There are 
hundreds of houses with which to estimate the 85 county-level intercepts, and 85 
counties with which to estimate the coefficient of county-level uranium. In a classical 
regression, however, the 85 county indicators and the county-level predictor would 
indeed be collinear. This problem is avoided in a multilevel model because of the 
partial pooling of the 0 7 ’s toward the group-level linear model. This is illustrated in 
Figure 12.6, which shows the estimates of all these 86 parameters—the 85 separate 
points and the slope of the line. In this model that includes a group-level predictor, 
the estimated intercepts are pulled toward this group-level regression line (rather 
than toward a constant, as in Figure 12.3b). The county-level uranium predictor 
Uj thus helps us estimate the county intercepts a j  but without overwhelming the 
information in individual counties.

Partial pooling o f group coefficients a j  in the presence o f group-level predictors

Equation (12.4) on page 258 gives the formula for partial pooling in the simple 
model with no group-level predictors. Once we add a group-level regression, a j  ~  
N(C/j7 , cr^), the parameters a j  are shrunk toward their regression estimates â j  =  
Uj f̂. Equivalently, we can say that the group-level errors rjj (in the model a j  =  
U jj  +  rjj) are shrunk toward 0 . As always, there is more pooling when the group- 
level standard deviation a a is small, and more smoothing for groups with fewer 
observations. The multilevel estimate of a j  is a weighted average of the no-pooling 
estimate for its group (ÿj — Xjf3) and the regression prediction â ji

predictor

rij
4

l
• (estimate from regression). (12.16)

Equivalently, the group-level errors rjj are partially pooled toward zero:

estimate of rjj



12.7 Model building and statistical significance

From classical to multilevel regression

When confronted with a multilevel data structure, such as the radon measurements 
considered here or the examples in the previous chapter, we typically start by f .tting 
some simple classical regressions and then work our way up to a full multilevel 
model. The four natural starting points are:

• Complete-pooling model: a single classical regression completely ignoring; the 
group information— that is, a single model fit to all the data, perhaps including 
group-level predictors but with no coefficients for group indicators.

• No-pooling model: a single classical regression that includes group indicators 
(but no group-level predictors) but with no model for the group coefficient s.

• Separate models: a separate classical regression in each group. This approach is 
not always possible if there are groups with small sample sizes. (For example, 
in Figure 12.4 on page 257, Aitkin County has three measurements in homes 
with basements and one in a home with no basement. If the sample from Aitkin 
County had happened to contain only houses with basements, then it would be 
impossible to estimate the slope ¡3 from this county alone.)

• Two-step analysis: starting with either the no-pooling or separate models, then 
fitting a classical group-level regression using, as “data,” the estimated coeffi­
cients for each group.

Each of these simpler models can be informative in its own right, and they also set 
us up for understanding the partial pooling in a multilevel model, as in Figure 12.4.

For large datasets, fitting a model separately in each group can be computa­
tionally efficient as well. One might imagine an iterative procedure that starts by 
fitting separate models, continues with the two-step analysis, and then returns to 
fitting separate models, but using the resulting group-level regression to guide the 
estimates of the varying coefficients. Such a procedure, if formalized appropriately, 
is in fact the usual algorithm used to fit multilevel models, as we discuss in Chapter 
17.
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When is multilevel modeling most effective?

Multilevel model is most important when it is close to complete pooling, at least 
for some of the groups (as for Lac Qui Parle County in Figure 12.4 on page 257). 
In this setting we can allow estimates to vary by group while still estimating ;hem 
precisely. As can be seen from formula (12.16), estimates are more pooled when the 
group-level standard deviation a a is small, that is, when the groups are similar to 
each other. In contrast, when a a is large, so that groups vary greatly, mult level 
modeling is not much better than simple no-pooling estimation.

At this point, it might seem that we are contradicting ourselves. Earlier wc mo­
tivated multilevel modeling as a compromise between no pooling and complete 
pooling, but now we are saying that multilevel modeling is effective when it is close 
to complete pooling, and ineffective when it is close to no pooling. If this is so, why 
not just always use the complete-pooling estimate?

We answer this question in two ways. First, when the multilevel estimate is close 
to complete pooling, it still allows variation between groups, which can be impor­
tant, in fact can be one of the goals of the study. Second, as in the radon example, 
the multilevel estimate can be close to complete pooling for groups with small sam-
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pie size and close to no pooling for groups with large sample size, automatically 
performing well for both sorts of group.

Using group-level predictors to make partial pooling more effective

In addition to being themselves of interest, group-level predictors play a special 
role in multilevel modeling by reducing the unexplained group-level variation and 
thus reducing the group-level standard deviation cra . This in turn increases the 
amount of pooling done by the multilevel estimate (see formula (12.16)), giving more 
precise estimates of the a/s, especially for groups for which the sample size rij is 
small. Following the template of classical regression, multilevel modeling typically 
proceeds by adding predictors at the individual and group levels and reducing 
the unexplained variance at each level. (However, as discussed in Section 21.7, 
adding a group-level predictor can actually increase the unexplained variance in 
some situations.)

Statistical significance

It is not appropriate to use statistical significance as a criterion for including par­
ticular group indicators in a multilevel model. For example, consider the simple 
varying-intercept radon model with no group-level predictor, in which the average 
intercept pa is estimated at 1.46, and the within-group intercepts otj are estimated 
at 1.46 — 0.27 d= 0.25 for county 1, 1 .4 6 -0 .5 3  ± 0 .1 0  for county 2, 1 .46+  0.02 ± 0 .2 8  
for county 3, and so forth (see page 261).

County 1 is thus approximately 1 standard error away from the average intercept 
of 1.46, county 2 is more than 4 standard errors away, . . .  and county 85 is less than 
1 standard error away. Of these three counties, only county 2 would be considered 
“statistically significantly” different from the average.

However, we should include all 85 counties in the model, and nothing is lost by 
doing so. The purpose of the multilevel model is not to see whether the radon levels 
in county 1 are statistically significantly different from those in county 2 , or from 
the Minnesota average. Rather, we seek the best possible estimate in each county, 
with appropriate accounting for uncertainty. Rather than make some significance 
threshold, we allow all the intercepts to vary and recognize that we may not have 
much precision in many of the individual groups. We illustrate this point in another 
example in Section 21.8.

The same principle holds for the models discussed in the following chapters, which 
include varying slopes, non-nested levels, discrete data, and other complexities. 
Once we have included a source of variation, we do not use statistical significance 
to pick and choose indicators to include or exclude from the model.

In practice, our biggest constraints— the main reasons we do not use extremely 
elaborate models in which all coefficients can vary with respect to all grouping 
factors— are fitting and understanding complex models. The lmer () function works 
well when it works, but it can break down for models with many grouping factors. 
Bugs is more general (see Part 2B of this book) but can be slow with large datasets 
or complex models. In the meantime we need to start simple and build up gradually, 
a process during which we can also build understanding of the models being fit.
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Predictions for multilevel models can be more complicated than for classical re­
gression because we can apply the model to existing groups or new groups. After 
a brief review of classical regression prediction, we explain in the context of the 
radon model.

Review o f prediction fo r  classical regression

In classical regression, prediction is simple: specify the predictor matrix X  for a set 
of new observations5 and then compute the linear predictor X/3, then simulat e the 
predictive data:

• For linear regression, simulate independent normal errors e* with mean 0 and 
standard deviation cr, and compute y = X/3 +  e; see Section 7.2.

• For logistic regression, simulate the predictive binary data: P r(^ ) =  logit~1 (Xip) 
for each new data point i\ see Section 7.4.

• With binomial logistic regression, specify the number of tries hi for each new 
unit and simulate jji from the binomial distribution with parameters hi and 
logit-  1 (Xi/3); see Section 7.4.

• With Poisson regression, specify the exposures hi for the new units, and simulate 
yi ~  Poisson^* eXi^) for each new i ; see Section 7.4.

As discussed in Section 7.2, the estimation for a regression in R  gives a set of isims 
simulation draws. Each of these is used to simulate the predictive data vector y , 
yielding a set of nsims simulated predictions. For example, in the election forecasting 
example of Figure 7.5 on page 146:

R  code model.1 <- lm (vote.88 ~ vote.86 + party.88 + inc.88) 
display (model.1) 
n.sims <- 1000
sim.l <- sim (model.1, n.sims) 
beta.sim <- sim.l$beta 
sigma.sim <- sim.l$sigma 
n.tilde <- length (vote.88)
X.tilde <- cbind (rep(l,n.tilde), vote.88, party.90, inc.90) 
y.tilde <- array (NA, c(n.sims, n.tilde)) 
for (s in l:n.sims) {
y.tildefs,] <- rnorm (n.tilde, X.tilde6/0*6/obeta.sim[s,] , sigma.sim[s] )

>

This matrix of simulations can be used to get point predictions (for example, 
m e d ia n (y .t i ld e [ ,3 ] ) gives the median estimate for yz) or predictive intervals 
(for example, q u a n t i le ( y .t i ld e [ ,3 ]  ,c ( .0 2 5 ,  .9 7 5 )) )  for individual data points 
or for more elaborate derived quantities, such as the predicted number of seats 
won by the Democrats in 1990 (see the end of Section 7.3). For many applications, 
the p re d ic t () function in R  is a good way to quickly get point predictions and 
intervals (see page 48); here we emphasize the more elaborate simulation approach 
which allows inferences for arbitrary quantities.

5 P red iction s are  m ore com plicated  for tim e-series m odels: even when p aram eters are  fit by clas­
sical regression, predictions m ust be m ade sequentially. See Sections 8 .4  and 2 4 .2  for exam ples.



Prediction fo r  a new observation in an existing group

We can make two sorts of predictions for the radon example: predicting the radon 
level for a new house within one of the counties in the dataset, and for a new house 
in a new county. We shall work with model (12.15) on page 266, with floor as an 
individual-level predictor and uranium as a group-level predictor

For example, suppose we wish to predict y , the log radon level for a house with no 
basement (thus, with radon measured on the first floor, so that x =  1) in Hennepin 
County (j =  26 of our Minnesota dataset). Conditional on the model parameters, 
the predicted value has a mean of a 26 +  P and a standard deviation of a y. That is,

y\6 ~  N(a26 +  0x,o%),

where we are using 6 to represent the entire vector of model parameters.
Given estimates of a , /3, and a y, we can create a predictive simulation for y using 

R  code such as

x. tilde <- 1
sigma.y.hat <- sigma.hat(M2)$sigma$data 
coef.hat <- as.matrix(coef(M2)$county)[26,]
y. tilde <- rnorm (1, coef.hat °/0*°/o c(l, x.tilde, u[26]), sigma.y.hat)

More generally, we can create a vector of n .sim s simulations to represent the pre­
dictive uncertainty in y:

n.sims <- 1000
coef.hat <- as.matrix(coef(M2)$county)[26,]
y.tilde <- rnorm (1000, coef.hat 0/0*°/o c(l, x.tilde, u[26]), sigma.y.hat)

Still more generally, we can add in the inferential uncertainty in the estimated 
parameters, a , /3, and a. For our purposes here, however, we shall ignore inferential 
uncertainty and just treat the parameters a,/3, as if they were estimated
perfectly from the data.6 In that case, the computation gives us 1000 simulation 
draws of y, which we can summarize in various ways. For example,

quantile (y.tilde, c(.25,.5,.75))
gives us a predictive median of 0.76 and a 50% predictive interval of [0.26,1.27]. 
Exponentiating gives us a prediction on the original (unlogged) scale of exp(0.76) =
2.1, with a 50% interval of [1.3,3.6].

For some applications we want the average, rather than the median, of the pre­
dictive distribution. For example, the expected risk from radon exposure is propor­
tional to the predictive average or mean, which we can compute directly from the 
simulations:

unlogged <- exp(y.tilde) 
mean (unlogged)
In this example, the predictive mean is 2.9, which is a bit higher than the median 

of 2.1. This makes sense: on the unlogged scale, this predictive distribution is skewed 
to the right.
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R  code

R  code

R  code

R  code

6 One reason we picked Hennepin C ou n ty (j  =  26 ) for th is  exam p le is th a t, w ith a  sam ple size 
of 105, its average radon level is accu ra te ly  estim ated  from  th e  available d ata .
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Now suppose we want to predict the radon level for a house, once again with no 
basement, but this time in a county not included in our analysis. We then must 
generate a new county-level error term, d, which we sample from its N(7 0 + 7 1 ^ ,  cr )̂ 
distribution. We shall assume the new county has a uranium level equal to the 
average of the uranium levels in the observed counties:

R  code u .tild e  <- mean (u)

grab the estimated 7 o ,7 i,cra from the fitted model:

R  code g.O.hat <- f ix e f(M2)["(In tercep t)"] 
g .l.h a t <- f ix e f(M2)["u .fu ll"] 
sigma.a.hat <- sigma.hat(M2)$sigma$county

and simulate possible intercepts for the new county:

R  code a .t ild e  <- rnorm (n.sims, g.O.hat + g .1 .h a t*u .tild e , sigma.a.hat)

We can then simulate possible values of the radon level for the new house ii: this 
county:

R  code y.tilde <- rnorm (n.sims, a.tilde + b.hat*x.tilde, sigma.y.hat)
Each simulation draw of y uses a different simulation of d, thus propagating the 
uncertainty about the new county into the uncertainty about the new house in this 
county.

Comparison o f within-group and between-group predictions. The resulting predic­
tion will be more uncertain than for a house in a known county, since we haxe no 
information about d. Indeed, the predictive 50% interval of this new y is [0.28,1..34], 
which is slightly wider than the predictive interval of [0.26,1.27] for the new house 
in county 26. The interval is only slightly wider because the within-county variation 
in this particular example is much higher than the between-county variation.

More specifically, from the fitted model on page 266, the within-county (residual) 
standard deviation a y is estimated at 0.76, and the between-county standard devi­
ation a a is estimated at 0.16. The log radon level for a new house in an already- 
measured county can then be measured to an accuracy of about ±0.76. The log 
radon level for a new house in a new county can be predicted to an accuracy of 
about ±\/0.762 +  0.162 =  ±0.78. The ratio 0.78/0.76 is 1.03, so we would expect 
the predictive interval for a new house in a new county to be about 3% wider 
than for a new house in an already-measured county. The change in interval width 
is small here because the unexplained between-county variance is so small in this 
dataset.

For another example, the 50% interval for the log radon level of a house with no 
basement in county 2 is [0.28,1.30], which is centered in a different place but also 
is narrower than the predictive interval for a new county.

Nonlinear predictions

Section 7.3 illustrated the use of simulation for nonlinear predictions from classical 
regression. We can perform similar calculations in multilevel models. For example, 
suppose we are interested in the average radon level among all the houses in Hen­
nepin County (j =  26). We can perform this inference using poststratification, first 
estimating the average radon level of the houses with and without basements in the 
county, then weighting these by the proportion of houses in the county that have



basements. We can look up this proportion from other data sources on homes, or 
we can estimate it from the available sample data.

For our purposes here, we shall assume that 90% of all the houses in Hennepin 
County have basements. The average radon level of all the houses in the county is 
then 0.1 times the average for the houses in Hennepin County without basements, 
plus 0.9 times the average for those with basements. To simulate in R:

y.tilde.basement <- rnorm (n.sims, a.hat[26], sigma.y.hat)
y.tilde.nobasement <- rnorm (n.sims, a.hat[26] + b.hat, sigma.y.hat)

We then compute the estimated mean for 1000 houses of each type in the county 
(first exponentiating since our model was on the log scale):

me an.radon.basement <- mean (exp (y.tilde.basement)) 
mean.radon.nobasement <- mean (exp (y.tilde.nobasement))

and finally poststratify given the proportion of houses of each type in the county:

mean.radon <- .9*mean.radon.basement + .l*mean.radon.basement
In Section 16.6 we return to the topic of predictions, using simulations from Bugs 
to capture the uncertainty in parameter estimates and then propagating inferential 
uncertainty into the predictions, rather than simply using point estimates a .h a t, 
b .h a t, and so forth.
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12.9 How many groups and how many observations per group are 
needed to fit a multilevel model?

Advice is sometimes given that multilevel models can only be used if the number of 
groups is higher than some threshold, or if there is some minimum number of obser­
vations per groups. Such advice is misguided. Multilevel modeling includes classical 
regression as a limiting case (complete pooling when group-level variances are zero, 
no pooling when group-level variances are large). When sample sizes are small, the 
key concern with multilevel modeling is the estimation of variance parameters, but 
it should still work at least as well as classical regression.

How many groups?

When J ,  the number of groups, is small, it is difficult to estimate the between-group 
variation and, as a result, multilevel modeling often adds little in such situations, 
beyond classical no-pooling models. The difficulty of estimating variance parameters 
is a technical issue to which we return in Section 19.6; to simplify, when cra cannot 
be estimated well, it tends to be overestimated, and so the partially pooled estimates 
are close to no pooling (this is what happens when <ja has a high value in (12.16) 
on page 269).

At the same time, multilevel modeling should not do any worse than no-pooling 
regression and sometimes can be easier to interpret, for example because one can 
include indicators for all J  groups rather than have to select one group as a baseline 
category.

One or two groups

With only one or two groups, however, multilevel modeling reduces to classical 
regression (unless “prior information” is explicitly included in the model; see Section
18.3). Here we usually express the model in classical form (for example, including

R  code

R  code

R  code



a single predictor for fem ale, rather than a multilevel model for the two levels of 
the sex factor).

Even with only one or two groups in the data, however, multilevel models can 
be useful for making predictions about new groups. See also Sections 2 1 .2 -22  5 for 
further connections between classical and multilevel models, and Section 22.6 for 
hierarchical models for improving estimates of variance parameters in settings with 
many grouping factors but few levels per factor.

How many observations per group?

Even two observations per group is enough to fit a multilevel model. It is even 
acceptable to have one observation in many of the groups. When groups have few 
observations, their a/ s won’t be estimated precisely, but they can still provide: par­
tial information that allows estimation of the coefficients and variance parameters 
of the individual- and group-level regressions.
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Larger datasets and more complex models

As more data arise, it makes sense to add parameters to a model. For example, 
consider a simple medical study, then separate estimates for men and women, other 
demographic breakdowns, different regions of the country, states, smaller geographic- 
areas, interactions between demographic and geographic categories, and so forth. 
As more data become available it makes sense to estimate more. These complexities 
are latent everywhere, but in small datasets it is not possible to learn so much and 
it is not necessarily worth the effort to fit a complex model when the resulting 
uncertainties will be so large.

12.10 Bibliographic note

Multilevel models have been used for decades in agriculture (Henderson, '.950. 
1984, Henderson et al., 1959, Robinson, 1991) and educational statistics (Novick 
et al., 1972, 1973, Bock, 1989), where it is natural to model animals in groups 
and students in classrooms. More recently, multilevel models have become popu­
lar in many social sciences and have been reviewed in books by Longford (1993). 
Goldstein (1995), Kreft and De Leeuw (1998), Snijders and Bosker (1999), Verbeke 
and Molenberghs (2000), Leyland and Goldstein (2001), Hox (2002), and Rai:den- 
bush and Bryk (2002). We do not attempt to trace here the many applications of 
multilevel models in various scientific fields.

It might also be useful to read up on Bayesian inference to understand the the­
oretical background behind multilevel models.7 Box and Tiao (1973) is a classic 
reference that focuses on linear models. It predates modern computational meth­
ods but might be useful for understanding the fundamentals. Gelman et al. (12 003) 
and Carlin and Louis (2000) cover applied Bayesian inference including the basics of 
multilevel modeling, with detailed discussions of computational algorithms. Berger

7 A s we discuss in Section 1 8 .3 , m ultilevel inferences can  be form ulated non-B ayesianly; however, 
un derstand ing th e B ayesian  derivations should help w ith th e o th er approaches to o . All m ul­
tilevel m odels are B ayesian  in th e sense of assigning prob ability  distribution s to  th e varying  
regression coefficients. T h e distinction  between B ayesian  and non-B ayesian  m ultilevel m od­
els arises only for th e  question of m odeling th e o th er p aram eters— th e nonvarying coefficients 
and th e varian ce p aram eters— and th is is typically  a  less im p o rtan t issue, especially when the  
num ber of groups is large.
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(1985) and Bernardo and Smith (1994) cover Bayesian inference from two different 
theoretical perspectives.

The R  function lm er() is described by Bates (2005a, b) and was developed from 
the linear and nonlinear mixed effects software described in Pinheiro and Bates 
(2000).

Multilevel modeling used to be controversial in statistics; see, for example, the 
discussions of the papers by Lindley and Smith (1972) and Rubin (1980) for some 
sense of the controversy.

The Minnesota radon data were analyzed by Price, Nero, and Gelman (1996); 
see also Price and Gelman (2004) for more on home radon modeling.

Statistical researchers have studied partial pooling in many ways; see James and 
Stein (1960), Efron and Morris (1979), DuMouchel and Harris (1983), Morris (1983), 
and Stigler (1983). Louis (1984), Shen and Louis (1998), Louis and Shen (1999), and 
Gelman and Price (1999) discuss some difficulties in the interpretation of partially 
pooled estimates. Zaslavsky (1993) discusses adjustments for undercount in the 
U.S. Census from a partial-pooling perspective. Normand, Glickman, and Gatsonis
(1997) discuss the use of multilevel models for evaluating health-care providers.

12.11 Exercises

1. Using data of your own that are appropriate for a multilevel model, write the 
model in the five ways discussed in Section 12.5.

2. Continuing with the analysis of the CD4 data from Exercise 11.4:

(a) Write a model predicting CD4 percentage as a function of time with varying 
intercepts across children. Fit using lm er() and interpret the coefficient for 
time.

(b) Extend the model in (a) to include child-level predictors (that is, group-level 
predictors) for treatment and age at baseline. F it using lm erO and interpret 
the coefficients on time, treatment, and age at baseline.

(c) Investigate the change in partial pooling from (a) to (b) both graphically and 
numerically.

(d) Compare results in (b) to those obtained in part (c).

3. Predictions for new observations and new groups:

(a) Use the model fit from Exercise 1 2 .2 (b) to generate simulation of predicted 
CD4 percentages for each child in the dataset at a hypothetical next time 
point.

(b) Use the same model fit to generate simulations of CD4 percentages at each of 
the time periods for a new child who was 4 years old at baseline.

4. Posterior predictive checking: continuing the previous exercise, use the fitted 
model from Exercise 12.2(b) to simulate a new dataset of CD4 percentages (with 
the same sample size and ages of the original dataset) for the final time point of 
the study, and record the average CD4 percentage in this sample. Repeat this 
process 1000 times and compare the simulated distribution to the observed CD4 
percentage at the final time point for the actual data.

5. Using the radon data, include county sample size as a group-level predictor and 
write the varying-intercept model. Fit this model using lm erO .

6 . Return to the beauty and teaching evaluations introduced in Exercise 3.5 and 
4.8.
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(a) Write a varying-intercept model for these data with no group-level predictors. 
Fit this model using lm erO and interpret the results.

(b) Write a varying-intercept model that you would like to fit including three 
group-level predictors. Fit this model using lm erO and interpret the results.

(c) How does the variation in average ratings across instructors compare to the 
variation in ratings across evaluators for the same instructor?

7. This exercise will use the data you found for Exercise 4.7. This time, rather :han 
repeating the same analysis across each year, or country (or whatever group* the 
data varies across), fit a multilevel model using lm erO instead. Compare the 
results to those obtained in your earlier analysis.

8 . Simulate data (outcome, individual-level predictor, group indicator, and group- 
level predictor) that would be appropriate for a multilevel model. See how partial 
pooling changes as you vary the sample size in each group and the number of 
groups.

9. Number of observations and number of groups:

(a) Take a simple random sample of one-fifth of the radon data. (You can cre­
ate this subset using the sample 0  function in R.) F it the varying-intercept 
model with floor as an individual-level predictor and log uranium as a county- 
level predictor, and compare your inferences to what was obtained by fil ting 
the model to the entire dataset. (Compare inferences for the individual- and 
group-level standard deviations, the slopes for floor and log uranium, tin; av­
erage intercept, and the county-level intercepts.)

(b) Repeat step (a) a few times, with a different random sample each time, and 
summarize how the estimates vary.

(c) Repeat step (a), but this time taking a cluster sample: a random sample of 
one-fifth of the counties, but then all the houses within each sampled county.


