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Tutorial

Likelihood is a concept that underlies most common 
statistical methods used in psychology. It is the basis 
of classical methods of maximum likelihood estimation, 
and it plays a key role in Bayesian inference. However, 
despite the ubiquity of likelihood in modern statistical 
methods, few basic introductions to this concept are 
available to the practicing psychological researcher. The 
goal of this Tutorial is to explain the concept of likeli-
hood and illustrate in an accessible way how it enables 
some of the most used kinds of classical and Bayesian 
statistical analyses; given this goal, I skip over many 
finer details, but interested readers can consult Pawitan 
(2001) for a complete mathematical treatment of the 
topic (see Edwards, 1974, for a historical review). This 
Tutorial is aimed at applied researchers interested in 
understanding the basis of their statistical tools and can 
also serve as a resource for introducing the topic of 
likelihood to students at a conceptual level.

Likelihood is a strange concept in that it is not a 
probability but is proportional to a probability. The like-
lihood of a hypothesis (H) given some data (D) is the 
probability of obtaining D given that H is true multiplied 
by an arbitrary positive constant K: L(H) = K × P(D|H). 
In most cases, a hypothesis represents a value of a 
parameter in a statistical model, such as the mean of a 
normal distribution. Because a likelihood is not actually 
a probability, it does not obey various rules of probabil-
ity; for example, likelihoods need not sum to 1.

A critical difference between probability and likeli-
hood is in the interpretation of what is fixed and what 
can vary. In the case of a conditional probability, 
P(D|H), the hypothesis is fixed and the data are free 
to vary. Likelihood, however, is the opposite. The likeli-
hood of a hypothesis, L(H), is conditioned on the data, 
as if they are fixed while the hypothesis can vary. The 
distinction is subtle, so it is worth repeating: For con-
ditional probability, the hypothesis is treated as a given, 
and the data are free to vary. For likelihood, the data 
are treated as a given, and the hypothesis varies.

The Likelihood Axiom

Edwards (1992) synthesized two statistical concepts—
the law of likelihood and the likelihood principle—to 
define a likelihood axiom that can form the basis for 
interpreting statistical evidence. The law of likelihood 
states that “within the framework of a statistical model, 
a particular set of data supports one statistical hypoth-
esis better than another if the likelihood of the first 
hypothesis, [given] the data, exceeds the likelihood of 
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the second hypothesis” (Edwards, 1992, p. 30). In other 
words, there is evidence for H1 over H2 if and only if 
the probability of the data under H1 is greater than the 
probability of the data under H2. That is, D is evidence 
for H1 over H2 if P(D|H1) > P(D|H2). If these two prob-
abilities are equivalent, then there is no evidence for 
either hypothesis over the other. Furthermore, the 
strength of the statistical evidence for H1 over H2 is 
quantified by the ratio of their likelihoods, which is 
written as LR(H1,H2) = L(H1)/L(H2)—which is equal to 
P(D|H1)/P(D|H2) because the arbitrary constants can-
cel out of the fraction.

The following brief example illustrates the main idea 
underlying the law of likelihood.1 Consider the case of 
Earl, who is visiting a foreign country that has a mix of 
women-only and mixed-gender saunas (the latter 
known to be visited equally often by men and women). 
After a leisurely jog through the city, he decides to stop 
by a nearby sauna to try to relax. Unfortunately, Earl 
does not know the local language, so he cannot deter-
mine from the posted signs whether this sauna is for 
women only or both genders. While Earl is attempting 
to decipher the signs, he observes three women inde-
pendently exit the sauna. If the sauna is for women 
only, the probability that all three exiting patrons would 
be women is 1.0; if the sauna is for both genders, this 
probability is .125 (i.e., .53). With this information, Earl 
can compute the likelihood ratio between the women-
only hypothesis and the mixed-gender hypothesis to 
be 8 (i.e., 1.0/.125); in other words, the evidence is 8 
to 1 in favor of the sauna being for women only.

The likelihood principle states that the likelihood 
function contains all of the information relevant to the 
evaluation of statistical evidence. Other facets of the 
data that do not factor into the likelihood function (e.g., 
the cost of collecting each observation or the stopping 
rule used when collecting the data) are irrelevant to 
the evaluation of the strength of the statistical evidence 
(Edwards, 1992, p. 30; Royall, 1997, p. 22). They can 
be meaningful for planning studies or for decision 
analysis, but they are separate from the strength of the 
statistical evidence.

Edwards (1992) defined the likelihood axiom as a 
natural combination of the law of likelihood and the 
likelihood principle. The likelihood axiom takes the 
implications of the law of likelihood together with  
the likelihood principle and states that the likelihood 
ratio comparing two statistical hypotheses contains “all 
the information which the data provide concerning the 
relative merits” of those hypotheses (p. 30).

Likelihoods Are Meant to Be Compared

Unlike a probability, a likelihood has no real meaning 
per se, because of the arbitrary constant K. Only through 

comparison do likelihoods become interpretable, 
because the constants cancel one another out. An exam-
ple using the binomial distribution provides a simple 
way to explain this aspect of likelihood.

Suppose a coin is flipped n times, and we observe 
x heads and n – x tails. The probability of getting x 
heads in n flips is defined by the binomial distribution 
as follows:
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counts the number of ways to get x heads in n flips. For 
example, if x = 2 and n = 3, the binomial coefficient is 
calculated as 3!/(2! × 1!), which is equal to 3; there are 
three distinct ways to get two heads in three flips (i.e., 
head-head-tail, head-tail-head, tail-head-head). Thus, 
the probability of getting two heads in three flips if p is 
.50 would be .375 (3 × .502 × (1 – .50)1), or 3 out of 8.

If the coin is fair, so that p = .50, and we flip it 10 
times, the probability of six heads and four tails is

P X p( = 6 = .50) =
10!

6! 4!
(.50) (1 .50) .21.6 4|

×
− ≈

If the coin is a trick coin, so that p = .75, the probability 
of six heads in 10 tosses is

P X p( = 6 = .75) =
10!

6! 4!
(.75) (1 .75) .15.6 4|

×
− ≈

To quantify the statistical evidence for the first 
hypothesis against the second, we simply divide one 
probability by the other. This ratio tells us everything 
we need to know about the support the data lend to 
the fair-coin hypothesis vis-à-vis the trick-coin hypoth-
esis. In the case of six heads in 10 tosses, the likelihood 
ratio for a fair coin versus the trick coin, denoted 
LR(.50,.75), is

LR(.50,.75) =
10!
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In other words, the data are 1.4 times more probable 
under the fair-coin hypothesis than under the trick-coin 
hypothesis. Notice how the first terms in the two equa-
tions, 10!/(6! × 4!), are equivalent and completely cancel 
each other out in the likelihood ratio.
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The first term in these equations reflects the rule we 
used for ending data collection. If we changed our 
sampling plan, the term’s value would change, but cru-
cially, because it is the same term in the numerator and 
denominator of the likelihood ratio, it always cancels 
itself out. For example, if we were to change our sam-
pling scheme from flipping the coin 10 times and count-
ing the number of heads to flipping the coin until we 
get six heads and counting the number of flips, this 
first term would change to 9!/(5! × 4!) because the final 
trial would be predetermined to be a head (Lindley, 
1993). But, crucially, because this term is in both the 
numerator and the denominator, the information con-
tained in the way the data were obtained would disap-
pear from the likelihood ratio. Thus, because the 
sampling plan does not affect the likelihood ratio, the 
likelihood axiom tells us that the sampling plan can be 
considered irrelevant to the evaluation of statistical evi-
dence, which makes likelihood and Bayesian methods 
particularly flexible (Gronau & Wagenmakers, in press; 
Rouder, 2014).

Consider if we leave out the first term in our calcula-
tions after observing six heads in 10 coin tosses, so that 
our numerator is P(X = 6|p = .50) = (.50)6(1 – .50)4 = 
0.000976 and our denominator is P(X = 6|p = .75) = 
(.75)6(1 – .75)4 = 0.000695. Using these values to form 
the likelihood ratio, we get LR(.50,.75) = 0.000976/ 
0.000695 = 1.4, confirming our initial result because the 
other terms simply canceled out before. Again, it is 
worth repeating that the value of a single likelihood is 
meaningless in isolation; only in comparing likelihoods 
do we find meaning.

Inference Using the Likelihood 
Function

Visual inspection

So far, likelihoods may seem overly restrictive because 
we have compared only two simple statistical hypoth-
eses in a single likelihood ratio. But what if we are 
interested in comparing all possible hypotheses at 
once? By plotting the entire likelihood function, we can 
“see” the full evidence the data provide for all possible 
hypotheses simultaneously. Birnbaum (1962) remarked 
that “the ‘evidential meaning’ of experimental results is 
characterized fully by the likelihood function” (p. 269), 
so let us look at some examples of likelihood functions 
and see what insights we can glean from them.2

The top panel of Figure 1 shows the likelihood func-
tion for observing six heads in 10 flips. The locations 
of the fair-coin and trick-coin hypotheses on the likeli-
hood curve are indicated with circles. Because the likeli-
hood function is meaningful only up to an arbitrary 
constant, the graph is scaled by convention so that the 

best-supported value (i.e., the maximum) corresponds 
to a likelihood of 1. The likelihood ratio of any two 
hypotheses is simply the ratio of their heights on this 
curve. For example, we can see in the top panel of 
Figure 1 that the fair coin has a higher likelihood than 
the trick coin, and we saw previously that it is more 
likely by roughly a factor of 1.4.

The middle panel of Figure 1 shows how the likeli-
hood function changes if instead of tossing the coin 
10 times and getting 6 heads, we toss it 100 times and 
obtain 60 heads: The curve gets much narrower. The 
strength of evidence favoring the fair-coin hypothesis 
over the trick-coin hypothesis has also changed; the 
new likelihood ratio is 29.9. This is much stronger 
evidence, but because of the narrowing of the likeli-
hood function, neither of these hypothesized values 
is very high up on the curve any more. It might be 
more informative to compare each of our hypotheses 
against the best-supported hypothesis—that the coin 
is not fair and the probability of heads is .60. This 
gives us two likelihood ratios: LR(.60,.50) = 7.5 and 
LR(.60,.75) = 224.
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Fig. 1.  The likelihood functions for observing 6 heads in 10 coin 
flips (top panel), 60 heads in 100 flips (middle panel), and 300 heads 
in 500 flips (bottom panel). In each panel, the circles indicate where 
the fair-coin and trick-coin hypotheses fall on the curve (i.e., hypoth-
esized values of .50 and .75, respectively). The dotted vertical lines 
indicate the value of p with the greatest likelihood.
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The bottom panel in Figure 1 shows the likelihood 
function for the case of 300 heads in 500 coin flips. 
Notice that both the fair-coin and the trick-coin hypoth-
eses appear to be very near the minimum likelihood; 
yet their likelihood ratio is much stronger than before. 
For these data, the likelihood ratio comparing these 
two hypotheses, LR(.50,.75), is 23,912,304, or nearly 24 
million. The inherent relativity of evidence is made 
clear in this example: The fair-coin hypothesis is sup-
ported when compared with one particular trick-coin 
hypothesis. But this should not be interpreted as abso-
lute evidence for the fair coin; the maximally supported 
hypothesis is still that the probability of heads is .60, 
and the likelihood ratio for this hypothesis versus the 
fair-coin hypothesis, LR(.60,.50), is nearly 24,000.

We need to be careful not to make blanket state-
ments about absolute support, such as claiming that 
the hypothesis with the greatest likelihood is “strongly 
supported by the data.” Always ask what the compari-
son is with. The best-supported hypothesis will usually 
be only weakly supported against any hypothesis posit-
ing a value that is a little smaller or a little larger.3 For 
example, in the case of 60 heads in 100 flips, the likeli-
hood ratio comparing the hypotheses that p = .60 and 
p = .75 is very large, LR(.60,.75) = 224, whereas the 
likelihood ratio comparing the hypotheses that p = .60 
and p = .65 is much smaller, LR(.60,.65) = 1.7, and pro-
vides barely any support one way or the other. Consider 
the following common real-world research scenario: 
We have run a study with a relatively small sample size, 
and the estimate of the effect of primary scientific inter-
est is considered “large” by some criteria (e.g., Cohen’s 
d > 0.75). We may find that the estimated effect size 
from the sample has a relatively large likelihood ratio 
compared with a hypothetical null value (i.e., a ratio 
large enough to “reject the null hypothesis”; see the 
next section), but that the likelihood ratio is much 
smaller when the comparison is with a “medium” or 
even “small” effect size. Without relatively large sample 
sizes, one is often precluded from saying anything pre-
cise about the size of the effect because the likelihood 
function is not very peaked when samples are small.

Maximum likelihood estimation

A natural question for a researcher to ask is, what is 
the hypothesis that is most supported by the data? This 
question is answered by using a method called maxi-
mum likelihood estimation (Fisher, 1922; see also Ly, 
Marsman, Verhagen, Grasman, & Wagenmakers, 2017, 
and Myung, 2003). In the plots in Figure 1, the vertical 
dotted lines mark the value of p that has the highest 
likelihood; this value is known as the maximum likeli-
hood estimate. We interpret this value of p as being the 

value that makes the observed data the most probable. 
Because the likelihood is proportional to the probabil-
ity of the data given the hypothesis, the hypothesis that 
maximizes P(D|H) will also maximize L(H). In the case 
of simple problems, plotting the likelihood function 
will reveal an obvious maximum. For example, the 
maximum of the binomial likelihood function will be 
located at the proportion of successes observed in the 
sample. Box 1 shows this to be true using a little bit of 
elementary calculus.4

With the maximum likelihood estimate in hand, there 
are a few possible ways to proceed with classical infer-
ence. First, one can perform a likelihood ratio test com-
paring two versions of the proposed statistical model: 
one in which the parameter of interest, θ, is set to a 
hypothesized null value and one in which the parameter 
is estimated from the data (the null model is said to be 
nested within the second model because it is a special 
case of the second model in which the parameter equals 
the null value). In practice, this amounts to comparing 
the value of the likelihood at the maximum likelihood 
estimate, θmle, and the value of the likelihood at the 
proposed null value, θnull. Likelihood ratio tests are com-
monly used to draw inferences with structural equation 
models. In the case of the binomial coin-toss example 
from earlier in this Tutorial, we would compare the prob-
ability of the data if p were .50 (the fair-coin hypothesis) 
with the probability of the data given the value of  
p estimated from the data (the maximum likelihood esti-
mate). In general, it can be shown that when the null 
hypothesis is true, and as the sample size gets large, 
twice the logarithm of this likelihood ratio approximately 
follows a chi-squared distribution with a single degree 
of freedom (Casella & Berger, 2002, p. 489; Wilks, 1938):
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where 


 means “is approximately distributed as.” If 
the value of the quantity on the left-hand side of Equa-
tion 2 is large enough (i.e., lies far enough out in the 
right tail of the chi-squared distribution), such that the 
p value is lower than a prespecified cutoff α (often 
chosen to be .05), then one would make the decision 
to reject the hypothesized null value.5

Second, one can perform a Wald test, in which the 
maximum likelihood estimate is compared with a 
hypothesized null value, and this difference is divided 
by the estimated standard error of the maximum likeli-
hood estimate. Essentially, this test determines how many 
standard errors separate the null value and the maximum 
likelihood estimate. The t test and z test are arguably the 
most common examples of the Wald test, and they are 
used for making inferences about parameters in settings 



64	 Etz

The binomial likelihood function is given in Equation 1, and our goal is to find the 
value of p that makes the probability of the outcome x the largest. Recall that to find 
possible maximums or minimums of a function, one takes the derivative of the function, 
sets it equal to 0, and solves. We can find the maximum of the likelihood function by 
first taking the logarithm of the function and then taking the derivative, because maxi-
mizing log[f (y)] will also maximize f (y). Taking the logarithm of the function will make 
our task easier, as it changes multiplication to addition and the derivative of log[y] is 
simply 1/y. Moreover, because log-likelihood functions are generally unimodal concave 
functions (they have a single peak and open downward), if we can do this calculus and 
solve our equation, then we will have found our desired maximum.

We begin by taking the logarithm of Equation 1:
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Remembering the rules of logarithms and exponents, we can rewrite this as
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Now we can take the derivative of Equation B1 as follows:
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(where the –1 in the last term of the second line comes from using the chain rule of 
derivatives on log[1 – p]). Now we can set the final expression equal to zero, and a few 
algebraic steps will lead us to the solution for p:

0 =
1

x

p

n x

p
−

−
−

n x

p

x

p

−
−1

=

np xp x xp− −=

np x=

p
x

n
= .

In other words, the maximum of the binomial likelihood function is found at the sample 
proportion, namely, the number of successes x divided by the total number of trials n.

Box 1.  Deriving the Maximum Likelihood Estimate for a Binomial Parameter
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that range from simple comparisons of means to complex 
multilevel regression models. For many common statisti-
cal models, it can be shown (e.g., Casella & Berger, 2002, 
p. 493) that if the null hypothesis is true, and as the 
sample size gets large, the Wald-test ratio approximately 
follows a normal distribution with a mean of 0 and stan-
dard deviation of 1,

θ θ
θ

mle null

mle

−
SE( )

    (0,1). N

As in the case of the likelihood ratio test, if the value 
of this ratio is large enough, such that the p value is 
less than the prespecified α, then one would make the 
decision to reject the hypothesized null value. This 
large-sample approximation also allows for easy con-
struction of 95% confidence intervals, by computing 
θmle ± 1.96 × SE(θmle). It is important to note that these 
confidence intervals are based on large-sample approx-
imations and therefore can be suboptimal when sam-
ples are relatively small (Ghosh, 1979).

Figure 2, which shows the logarithm of the likeli-
hood function (known as the log likelihood) for 60 
heads in 100 flips, illustrates the relationship between 
the two types of tests. The likelihood ratio test looks 
at the difference in height between the likelihood at its 
maximum and the likelihood at the null hypothesis, and 
rejects the null hypothesis if the difference is large 
enough. In contrast, the Wald test looks at how many 
standard errors the maximum is from the null value and 
rejects the null hypothesis if the estimate is sufficiently 
far away. In other words, the likelihood ratio test evalu-
ates the vertical discrepancy between two values on 
the likelihood function (y-axis), and the Wald test evalu-
ates the horizontal discrepancy between two values of 
the parameter (x-axis). As sample size grows very large, 
the results from these methods converge (Engle, 1984), 
but in practice, each has its advantages. An advantage 
of the Wald test is its simplicity when one tests a single 
parameter at a time; all one needs is a point estimate 
and its standard error to easily perform hypothesis tests 
and compute confidence intervals. An advantage of the 
likelihood ratio test is that it is easily extended to simul-
taneously test multiple parameters—by increasing the 
degrees of freedom of the chi-squared distribution in 
Equation 2 to be equal to the number of parameters 
being tested (the Wald test can be extended to the 
multiparameter case, but it is not as elegant as the 
likelihood ratio test in such scenarios).

Bayesian updating via the likelihood

As we have seen, likelihoods form the basis for much of 
classical statistics via the method of maximum likelihood 

estimation. Likelihoods are also a key component of 
Bayesian inference. The Bayesian approach to statistics 
is fundamentally about making use of all available infor-
mation when drawing inferences in the face of uncer-
tainty. This information may be the results from previous 
studies, newly collected data, or, as is usually the case, 
both. Bayesian inference allows one to synthesize these 
two forms of information to make the best possible 
inference.

Previous information is quantified using what is 
known as a prior distribution. The prior distribution of 
θ, the parameter of interest, is P(θ); this is a function 
that specifies which values of θ are more or less likely, 
given one’s interpretation of previous relevant informa-
tion. The information gained from new data is repre-
sented by the likelihood function, proportional to 
P(D|θ), which is then multiplied by the prior distribu-
tion (and rescaled) to yield the posterior distribution, 
P(θ|D), which is then used as the basis for the desired 
inference. Thus, the likelihood function is used to 
update the prior distribution to a posterior distribution. 
Interested readers can find a detailed technical intro-
duction to Bayesian inference in Etz and Vandekerckhove 
(2017) and an annotated list of useful Bayesian-statistics 
references in Etz, Gronau, Dablander, Edelsbrunner, 
and Baribault (2017).

Mathematically, a well-known conditional-probability 
theorem (first shown by Bayes, 1763) states that the 
procedure for obtaining the posterior distribution of θ 
is as follows:
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Fig. 2.  Illustration of the difference between the likelihood ratio 
test and the Wald test. In this plot of the logarithm of the binomial 
likelihood function for observing 60 heads in 100 coin flips, the x-axis 
is restricted to the values of p that have appreciable log-likelihood 
values. Both tests compare two hypothesized values of p (indicated 
by the plotted points): the null value, .50, and the maximum likeli-
hood estimate, .60. However, the likelihood ratio test evaluates the 
points’ vertical discrepancy, whereas the Wald test evaluates their 
horizontal discrepancy.
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In this context, K is merely a rescaling constant and is 
equal to 1/P(D). We often write this theorem more 
simply as

P D P P D( ) ( ) ( ),θ θ θ| |∝ ×

where ∝ means “is proportional to.”
The following example shows how to use the likeli-

hood function to update a prior distribution into a pos-
terior distribution. The simplest way to illustrate how 
likelihoods act as an updating factor is to use conjugate 
distribution families (Raiffa & Schlaifer, 1961). A prior 
distribution and likelihood function are said to be 

conjugate when multiplying them together and rescaling 
results in a posterior distribution in the same family as 
the prior distribution. For example, if one has binomial 
data, one can use a beta prior distribution to obtain a 
beta posterior distribution (see Box 2). Conjugate prior 
distributions are by no means required for doing Bayes-
ian updating, but they reduce the mathematics involved 
and so are ideal for illustrative purposes.

Consider the previous example of observing 60 
heads in 100 flips of a coin. Imagine that going into 
this experiment, we had some reason to believe the 
coin’s bias was within .20 of being fair in either direc-
tion; that is, we believed that p was likely within the 

Conjugate distributions are convenient in that they reduce Bayesian updating 
to some simple algebra. We begin with the formula for the binomial likelihood 
function,

Likelihood ∝ − −p px n x(1 )

(notice that the leading term is dropped), and then multiply it by the formula for 
the beta prior with a and b shape parameters,

Prior ∝ −− −p pa b1 1(1 ) ,

to obtain the following formula for the posterior distribution:

	 Posterior ∝ − × −− − −p p p pa b x n x1 1(1 ) (1 ) . 	 (B2)

The terms in Equation B2 can be regrouped as follows:

Posterior ∝ × − −− − −p p p pa x b n x1 1(1 ) (1 ) ,

which suggests that we can interpret the information contained in the prior as 
adding a certain amount of previous data (i.e., a – 1 past successes and b – 1 
past failures) to the data from our current experiment. Because we are multiply-
ing together terms with the same base, the exponents can be added together in a 
final simplification step:

Posterior ∝ −+ − − + −p px a n x b1 1(1 ) .

This final formula looks like our original beta distribution but with new shape 
parameters equal to x + a and n – x + b. In other words, we started with the 
prior distribution beta(a,b) and added the successes from the data, x, to a and 
the failures, n – x, to b, and our posterior distribution is a beta(x + a,n – x + b) 
distribution.

Prior

Successes Failures

Likelihood

Box 2.  Deriving the Posterior Distribution for a Binomial Parameter Using a Beta Prior
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range of .30 to .70. We could choose to represent this 
information using the beta(25,25) distribution6 shown 
as the dotted line in Figure 3. The likelihood function 
for the 60 flips is shown as the dot-and-dashed line and 
is identical to that shown in the middle panel in Figure 
1. Using the result from Box 2, we know that the result-
ing posterior distribution for p is a beta(85,65) distribu-
tion, shown as the solid line in Figure 3.

The entire posterior distribution represents the solu-
tion to our Bayesian estimation problem, but research-
ers often report summary measures to simplify the 
communication of results. For instance, we could point 
to the maximum of the posterior distribution—known 
as the maximum a posteriori estimate—as our best 
guess for the value of p, which in this case is .568. 
Notice that this is slightly different from the maximum 
likelihood estimate, .60. This discrepancy is due to the 
extra information about p provided by the prior distri-
bution; as shown in Box 2, the prior distribution effec-
tively adds a number of previous successes and failures 
to our sample data. Thus, the posterior distribution 
represents a compromise between the information we 
had regarding p before the experiment and the informa-
tion gained about p by doing the experiment. Because 
we had previous information suggesting that p is prob-
ably close to .50, our posterior estimate is said to be 
“shrunk” toward .50. Bayesian estimates tend to be 
more accurate and to lead to better empirical predic-
tions than the maximum likelihood estimate in many 
scenarios (Efron & Morris, 1977), especially when the 
sample size is relatively small.

Likelihood also forms the basis of the Bayes factor, 
a tool for conducting Bayesian hypothesis tests first 
proposed by Wrinch and Jeffreys ( Jeffreys, 1935; Wrinch 
& Jeffreys, 1921) and independently developed by Haldane 

(Haldane, 1932; although see Etz & Wagenmakers, 
2017). An important advantage of the Bayes factor is 
that it can be used to compare any two models regard-
less of their form, whereas the frequentist likelihood 
ratio test can compare only two hypotheses that are 
nested. Nevertheless, when nested hypotheses are com-
pared, Bayes factors can be seen as simple extensions 
of likelihood ratios. In contrast to the frequentist likeli-
hood ratio test outlined earlier, which evaluates the size 
of the likelihood ratio comparing θnull to θmle, the Bayes 
factor takes a weighted average of the likelihood ratio 
across all possible values of θ; the likelihood ratio is 
evaluated at each value of θ and weighted by the prior 
probability density assigned to that value, and then 
these products are added up to obtain the Bayes factor 
(mathematically, this is done by integrating the likeli-
hood ratio with respect to the prior distribution; see 
the appendix).

Conclusion

This Tutorial has defined likelihood, shown what a likeli-
hood function looks like, and explained how this func-
tion forms the basis of two common inferential 
procedures: maximum likelihood estimation and Bayes-
ian inference. The examples used were intentionally 
simple and artificial to keep the mathematical burden 
light, but I hope that they can give some insight into the 
fundamental statistical concept known as likelihood.

Appendix
Note that for a generic random variable ω, the expected 
value (i.e., average) of the function g(ω) with respect to 
a probability distribution P(ω) is defined as

E g g P dω ω ω ω ω( ) = ( ) ( ) .[ ] ∫Ω
I use this definition of expected value to show that the 

Bayes factor for a comparison of nested models can be 
written as the expected value of the likelihood ratio with 
respect to the specified prior distribution.

The Bayes factor comparing H1 with H0 is written simi-
larly to the likelihood ratio:

	 BF
P D

P D10
1

0

=
( )

( )
.

|

|

H

H
	 (A1)

In the context of comparing nested models, H0 specifies 
that θ = θnull, so P(D|H0) = P(D|θnull); H1 assigns θ a prior 
distribution, θ ~ P(θ), so that P D H P D P d( | ) = ( ) ( )1 Θ∫ |θ θ θ. 
Thus, we can rewrite Equation A1 as

	 BF
P D P d

P D10 =
( ) ( )

( )
.Θ∫ |

|

θ θ θ

θnull

	 (A2)
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Fig. 3.  Illustration of Bayesian updating of a prior distribution to 
a posterior distribution. In this example of a coin-flip experiment, 
the prior distribution reflects the expectation that the coin is within 
.20 of being fair in either direction, and the likelihood function is 
based on the observation of 60 heads in 100 flips. The posterior 
distribution is a compromise between the information brought by 
those two distributions.
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Because the denominator of Equation A2 is a fixed 
number, we can bring it inside the integral, and we can 
see that the resulting expression has the form of the 
expected value of the likelihood ratio between θ and θnull 
with respect to the prior distribution of θ:

BF
P D

P D
P d

E LR

10 = Θ∫
( )
( ) ( )

= ( ) 

|

|

, .

θ
θ

θ θ

θ θθ

null

null

Action Editor

Daniel J. Simons served as action editor for this article.

Author Contributions

A. Etz is the sole author of this article and is responsible for 
its content.

ORCID iD

Alexander Etz  https://orcid.org/0000-0001-9394-6804

Acknowledgments

A portion of this material previously appeared on my personal 
blog (https://alexanderetz.com). I am very grateful to Quentin 
Gronau and J. P. de Ruiter for helpful comments.

Declaration of Conflicting Interests

The author(s) declared that there were no conflicts of interest 
with respect to the authorship or the publication of this article.

Funding

The author was supported by Grant 1534472 from the National 
Science Foundation’s Methods, Measurements, and Statistics 
panel, as well as by the National Science Foundation Gradu-
ate Research Fellowship Program (Grant DGE1321846).

Notes

1. This lighthearted example was first suggested to me by 
J. P. de Ruiter, who graciously permitted its inclusion in this 
manuscript.
2. An R script for reproducing this Tutorial’s computations and 
plots is available at the Open Science Framework (https://osf 
.io/t2ukm/).
3. The amount that the likelihood ratio changes with small devi-
ations from the maximum likelihood estimate is fundamentally 
captured by the likelihood function’s peakedness. Formally, 
the peakedness (or curvature) of a function at a given point 
is found by taking the second derivative at that point. If that 
function happens to be the logarithm of the likelihood func-
tion for some parameter θ, and the point of interest is its maxi-
mum point, the negative of the second derivative is called the  
observed Fisher information, or sometimes simply the ob- 
served information, which is written as I(θ) (taking the negative 
makes the information a positive quantity, because the second 

derivative of a function at its maximum will be negative). See 
Ly, Marsman, Verhagen, Grasman, and Wagenmakers (2017) for 
more technical details.
4. In more complicated scenarios with many parameters, there 
are usually not simple equations one can directly solve to find the 
maximum, so one must turn to numerical approximation methods.
5. We saw in the previous section that the value of the likeli-
hood ratio itself does not depend on the sampling plan, but 
now we see that the likelihood ratio test does depend on the 
sampling plan because it requires the sampling distribution of 
twice the logarithm of the likelihood ratio to be chi-squared. 
Royall (1997) resolved this potential inconsistency by pointing 
out that the likelihood ratio and its test answer different ques-
tions: The former answers the question, “How should I interpret 
the data as evidence?” The latter answers the question, “What 
should I do with this evidence?”
6. The beta(a,b) distribution spans from 0 to 1, and its two argu-
ments, a and b, determine its form: When a = b, the distribution 
is symmetric around .50; as a special case, when a = b = 1, the 
distribution is uniform (flat) between 0 and 1; when a > b, the 
distribution puts more mass on values above .50, and when a < 
b, the distribution puts more mass on values below .50.
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